| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnsg3.1 |
|
| 2 |
|
isnsg3.2 |
|
| 3 |
|
isnsg3.3 |
|
| 4 |
|
nsgsubg |
|
| 5 |
1 2 3
|
nsgconj |
|
| 6 |
5
|
3expb |
|
| 7 |
6
|
ralrimivva |
|
| 8 |
4 7
|
jca |
|
| 9 |
|
simpl |
|
| 10 |
|
subgrcl |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
|
simprll |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
1 2 13 14
|
grplinv |
|
| 16 |
11 12 15
|
syl2anc |
|
| 17 |
16
|
oveq1d |
|
| 18 |
1 14
|
grpinvcl |
|
| 19 |
11 12 18
|
syl2anc |
|
| 20 |
|
simprlr |
|
| 21 |
1 2
|
grpass |
|
| 22 |
11 19 12 20 21
|
syl13anc |
|
| 23 |
1 2 13
|
grplid |
|
| 24 |
11 20 23
|
syl2anc |
|
| 25 |
17 22 24
|
3eqtr3d |
|
| 26 |
25
|
oveq1d |
|
| 27 |
1 2 3 14 11 20 12
|
grpsubinv |
|
| 28 |
26 27
|
eqtrd |
|
| 29 |
|
simprr |
|
| 30 |
|
simplr |
|
| 31 |
|
oveq1 |
|
| 32 |
|
id |
|
| 33 |
31 32
|
oveq12d |
|
| 34 |
33
|
eleq1d |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
eleq1d |
|
| 38 |
34 37
|
rspc2va |
|
| 39 |
19 29 30 38
|
syl21anc |
|
| 40 |
28 39
|
eqeltrrd |
|
| 41 |
40
|
expr |
|
| 42 |
41
|
ralrimivva |
|
| 43 |
1 2
|
isnsg2 |
|
| 44 |
9 42 43
|
sylanbrc |
|
| 45 |
8 44
|
impbii |
|