Metamath Proof Explorer


Theorem isnsg4

Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
nmzsubg.2 X = Base G
nmzsubg.3 + ˙ = + G
Assertion isnsg4 S NrmSGrp G S SubGrp G N = X

Proof

Step Hyp Ref Expression
1 elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
2 nmzsubg.2 X = Base G
3 nmzsubg.3 + ˙ = + G
4 2 3 isnsg S NrmSGrp G S SubGrp G x X y X x + ˙ y S y + ˙ x S
5 eqcom N = X X = N
6 1 eqeq2i X = N X = x X | y X x + ˙ y S y + ˙ x S
7 rabid2 X = x X | y X x + ˙ y S y + ˙ x S x X y X x + ˙ y S y + ˙ x S
8 5 6 7 3bitri N = X x X y X x + ˙ y S y + ˙ x S
9 8 anbi2i S SubGrp G N = X S SubGrp G x X y X x + ˙ y S y + ˙ x S
10 4 9 bitr4i S NrmSGrp G S SubGrp G N = X