Metamath Proof Explorer


Theorem isnum2

Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion isnum2 A dom card x On x A

Proof

Step Hyp Ref Expression
1 cardf2 card : y | x On x y On
2 1 fdmi dom card = y | x On x y
3 2 eleq2i A dom card A y | x On x y
4 relen Rel
5 4 brrelex2i x A A V
6 5 rexlimivw x On x A A V
7 breq2 y = A x y x A
8 7 rexbidv y = A x On x y x On x A
9 6 8 elab3 A y | x On x y x On x A
10 3 9 bitri A dom card x On x A