Metamath Proof Explorer


Theorem isnv

Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypotheses isnv.1 X=ranG
isnv.2 Z=GIdG
Assertion isnv GSNNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny

Proof

Step Hyp Ref Expression
1 isnv.1 X=ranG
2 isnv.2 Z=GIdG
3 nvex GSNNrmCVecGVSVNV
4 vcex GSCVecOLDGVSV
5 4 adantr GSCVecOLDN:XGVSV
6 4 simpld GSCVecOLDGV
7 rnexg GVranGV
8 6 7 syl GSCVecOLDranGV
9 1 8 eqeltrid GSCVecOLDXV
10 fex N:XXVNV
11 9 10 sylan2 N:XGSCVecOLDNV
12 11 ancoms GSCVecOLDN:XNV
13 df-3an GVSVNVGVSVNV
14 5 12 13 sylanbrc GSCVecOLDN:XGVSVNV
15 14 3adant3 GSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+NyGVSVNV
16 1 2 isnvlem GVSVNVGSNNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
17 3 15 16 pm5.21nii GSNNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny