Metamath Proof Explorer


Theorem isnv

Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypotheses isnv.1 X = ran G
isnv.2 Z = GId G
Assertion isnv G S N NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y

Proof

Step Hyp Ref Expression
1 isnv.1 X = ran G
2 isnv.2 Z = GId G
3 nvex G S N NrmCVec G V S V N V
4 vcex G S CVec OLD G V S V
5 4 adantr G S CVec OLD N : X G V S V
6 4 simpld G S CVec OLD G V
7 rnexg G V ran G V
8 6 7 syl G S CVec OLD ran G V
9 1 8 eqeltrid G S CVec OLD X V
10 fex N : X X V N V
11 9 10 sylan2 N : X G S CVec OLD N V
12 11 ancoms G S CVec OLD N : X N V
13 df-3an G V S V N V G V S V N V
14 5 12 13 sylanbrc G S CVec OLD N : X G V S V N V
15 14 3adant3 G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y G V S V N V
16 1 2 isnvlem G V S V N V G S N NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y
17 3 15 16 pm5.21nii G S N NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y