Metamath Proof Explorer


Theorem isnvc2

Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis isnvc2.1 F = Scalar W
Assertion isnvc2 W NrmVec W NrmMod F DivRing

Proof

Step Hyp Ref Expression
1 isnvc2.1 F = Scalar W
2 isnvc W NrmVec W NrmMod W LVec
3 nlmlmod W NrmMod W LMod
4 1 islvec W LVec W LMod F DivRing
5 4 baib W LMod W LVec F DivRing
6 3 5 syl W NrmMod W LVec F DivRing
7 6 pm5.32i W NrmMod W LVec W NrmMod F DivRing
8 2 7 bitri W NrmVec W NrmMod F DivRing