Metamath Proof Explorer


Theorem isnvi

Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses isnvi.5 X = ran G
isnvi.6 Z = GId G
isnvi.7 G S CVec OLD
isnvi.8 N : X
isnvi.9 x X N x = 0 x = Z
isnvi.10 y x X N y S x = y N x
isnvi.11 x X y X N x G y N x + N y
isnvi.12 U = G S N
Assertion isnvi U NrmCVec

Proof

Step Hyp Ref Expression
1 isnvi.5 X = ran G
2 isnvi.6 Z = GId G
3 isnvi.7 G S CVec OLD
4 isnvi.8 N : X
5 isnvi.9 x X N x = 0 x = Z
6 isnvi.10 y x X N y S x = y N x
7 isnvi.11 x X y X N x G y N x + N y
8 isnvi.12 U = G S N
9 5 ex x X N x = 0 x = Z
10 6 ancoms x X y N y S x = y N x
11 10 ralrimiva x X y N y S x = y N x
12 7 ralrimiva x X y X N x G y N x + N y
13 9 11 12 3jca x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y
14 13 rgen x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y
15 1 2 isnv G S N NrmCVec G S CVec OLD N : X x X N x = 0 x = Z y N y S x = y N x y X N x G y N x + N y
16 3 4 14 15 mpbir3an G S N NrmCVec
17 8 16 eqeltri U NrmCVec