Metamath Proof Explorer


Theorem isnzr2hash

Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 . (Contributed by AV, 14-Apr-2019)

Ref Expression
Hypothesis isnzr2hash.b B = Base R
Assertion isnzr2hash R NzRing R Ring 1 < B

Proof

Step Hyp Ref Expression
1 isnzr2hash.b B = Base R
2 eqid 1 R = 1 R
3 eqid 0 R = 0 R
4 2 3 isnzr R NzRing R Ring 1 R 0 R
5 1 2 ringidcl R Ring 1 R B
6 1 3 ring0cl R Ring 0 R B
7 1xr 1 *
8 7 a1i 1 R B 0 R B 1 R 0 R 1 *
9 prex 1 R 0 R V
10 hashxrcl 1 R 0 R V 1 R 0 R *
11 9 10 mp1i 1 R B 0 R B 1 R 0 R 1 R 0 R *
12 1 fvexi B V
13 hashxrcl B V B *
14 12 13 mp1i 1 R B 0 R B 1 R 0 R B *
15 1lt2 1 < 2
16 hashprg 1 R B 0 R B 1 R 0 R 1 R 0 R = 2
17 16 biimpa 1 R B 0 R B 1 R 0 R 1 R 0 R = 2
18 15 17 breqtrrid 1 R B 0 R B 1 R 0 R 1 < 1 R 0 R
19 simpl 1 R B 0 R B 1 R 0 R 1 R B 0 R B
20 fvex 1 R V
21 fvex 0 R V
22 20 21 prss 1 R B 0 R B 1 R 0 R B
23 19 22 sylib 1 R B 0 R B 1 R 0 R 1 R 0 R B
24 hashss B V 1 R 0 R B 1 R 0 R B
25 12 23 24 sylancr 1 R B 0 R B 1 R 0 R 1 R 0 R B
26 8 11 14 18 25 xrltletrd 1 R B 0 R B 1 R 0 R 1 < B
27 26 ex 1 R B 0 R B 1 R 0 R 1 < B
28 5 6 27 syl2anc R Ring 1 R 0 R 1 < B
29 28 imdistani R Ring 1 R 0 R R Ring 1 < B
30 simpl R Ring 1 < B R Ring
31 1 2 3 ring1ne0 R Ring 1 < B 1 R 0 R
32 30 31 jca R Ring 1 < B R Ring 1 R 0 R
33 29 32 impbii R Ring 1 R 0 R R Ring 1 < B
34 4 33 bitri R NzRing R Ring 1 < B