Metamath Proof Explorer


Theorem isoas

Description: Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses isoas.p P = Base G
isoas.m - ˙ = dist G
isoas.i I = Itv G
isoas.l L = Line 𝒢 G
isoas.g φ G 𝒢 Tarski
isoas.a φ A P
isoas.b φ B P
isoas.c φ C P
isoas.1 φ ¬ C A L B A = B
isoas.2 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ ACB ”⟩
Assertion isoas φ A - ˙ B = A - ˙ C

Proof

Step Hyp Ref Expression
1 isoas.p P = Base G
2 isoas.m - ˙ = dist G
3 isoas.i I = Itv G
4 isoas.l L = Line 𝒢 G
5 isoas.g φ G 𝒢 Tarski
6 isoas.a φ A P
7 isoas.b φ B P
8 isoas.c φ C P
9 isoas.1 φ ¬ C A L B A = B
10 isoas.2 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ ACB ”⟩
11 eqid 𝒢 G = 𝒢 G
12 1 4 3 5 6 7 8 9 ncolrot1 φ ¬ A B L C B = C
13 1 2 3 5 7 8 axtgcgrrflx φ B - ˙ C = C - ˙ B
14 eqid hl 𝒢 G = hl 𝒢 G
15 1 3 5 14 6 7 8 6 8 7 10 cgracom φ ⟨“ ACB ”⟩ 𝒢 G ⟨“ ABC ”⟩
16 1 3 2 5 6 8 7 6 7 8 15 cgraswaplr φ ⟨“ BCA ”⟩ 𝒢 G ⟨“ CBA ”⟩
17 1 2 3 5 7 8 6 8 7 6 4 12 13 16 10 tgasa φ ⟨“ BCA ”⟩ 𝒢 G ⟨“ CBA ”⟩
18 1 2 3 11 5 7 8 6 8 7 6 17 cgr3simp3 φ A - ˙ B = A - ˙ C