Metamath Proof Explorer


Theorem isoeq3

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq3 S = T H Isom R , S A B H Isom R , T A B

Proof

Step Hyp Ref Expression
1 breq S = T H x S H y H x T H y
2 1 bibi2d S = T x R y H x S H y x R y H x T H y
3 2 2ralbidv S = T x A y A x R y H x S H y x A y A x R y H x T H y
4 3 anbi2d S = T H : A 1-1 onto B x A y A x R y H x S H y H : A 1-1 onto B x A y A x R y H x T H y
5 df-isom H Isom R , S A B H : A 1-1 onto B x A y A x R y H x S H y
6 df-isom H Isom R , T A B H : A 1-1 onto B x A y A x R y H x T H y
7 4 5 6 3bitr4g S = T H Isom R , S A B H Isom R , T A B