Metamath Proof Explorer


Theorem isoeq4

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq4 A = C H Isom R , S A B H Isom R , S C B

Proof

Step Hyp Ref Expression
1 f1oeq2 A = C H : A 1-1 onto B H : C 1-1 onto B
2 raleq A = C y A x R y H x S H y y C x R y H x S H y
3 2 raleqbi1dv A = C x A y A x R y H x S H y x C y C x R y H x S H y
4 1 3 anbi12d A = C H : A 1-1 onto B x A y A x R y H x S H y H : C 1-1 onto B x C y C x R y H x S H y
5 df-isom H Isom R , S A B H : A 1-1 onto B x A y A x R y H x S H y
6 df-isom H Isom R , S C B H : C 1-1 onto B x C y C x R y H x S H y
7 4 5 6 3bitr4g A = C H Isom R , S A B H Isom R , S C B