Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
isoeq4
Next ⟩
isoeq5
Metamath Proof Explorer
Ascii
Unicode
Theorem
isoeq4
Description:
Equality theorem for isomorphisms.
(Contributed by
NM
, 17-May-2004)
Ref
Expression
Assertion
isoeq4
⊢
A
=
C
→
H
Isom
R
,
S
A
B
↔
H
Isom
R
,
S
C
B
Proof
Step
Hyp
Ref
Expression
1
f1oeq2
⊢
A
=
C
→
H
:
A
⟶
1-1 onto
B
↔
H
:
C
⟶
1-1 onto
B
2
raleq
⊢
A
=
C
→
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
↔
∀
y
∈
C
x
R
y
↔
H
⁡
x
S
H
⁡
y
3
2
raleqbi1dv
⊢
A
=
C
→
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
↔
∀
x
∈
C
∀
y
∈
C
x
R
y
↔
H
⁡
x
S
H
⁡
y
4
1
3
anbi12d
⊢
A
=
C
→
H
:
A
⟶
1-1 onto
B
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
↔
H
:
C
⟶
1-1 onto
B
∧
∀
x
∈
C
∀
y
∈
C
x
R
y
↔
H
⁡
x
S
H
⁡
y
5
df-isom
⊢
H
Isom
R
,
S
A
B
↔
H
:
A
⟶
1-1 onto
B
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
6
df-isom
⊢
H
Isom
R
,
S
C
B
↔
H
:
C
⟶
1-1 onto
B
∧
∀
x
∈
C
∀
y
∈
C
x
R
y
↔
H
⁡
x
S
H
⁡
y
7
4
5
6
3bitr4g
⊢
A
=
C
→
H
Isom
R
,
S
A
B
↔
H
Isom
R
,
S
C
B