Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
isoeq5
Next ⟩
nfiso
Metamath Proof Explorer
Ascii
Unicode
Theorem
isoeq5
Description:
Equality theorem for isomorphisms.
(Contributed by
NM
, 17-May-2004)
Ref
Expression
Assertion
isoeq5
⊢
B
=
C
→
H
Isom
R
,
S
A
B
↔
H
Isom
R
,
S
A
C
Proof
Step
Hyp
Ref
Expression
1
f1oeq3
⊢
B
=
C
→
H
:
A
⟶
1-1 onto
B
↔
H
:
A
⟶
1-1 onto
C
2
1
anbi1d
⊢
B
=
C
→
H
:
A
⟶
1-1 onto
B
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
↔
H
:
A
⟶
1-1 onto
C
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
3
df-isom
⊢
H
Isom
R
,
S
A
B
↔
H
:
A
⟶
1-1 onto
B
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
4
df-isom
⊢
H
Isom
R
,
S
A
C
↔
H
:
A
⟶
1-1 onto
C
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
5
2
3
4
3bitr4g
⊢
B
=
C
→
H
Isom
R
,
S
A
B
↔
H
Isom
R
,
S
A
C