Metamath Proof Explorer


Theorem isoeq5

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq5 B = C H Isom R , S A B H Isom R , S A C

Proof

Step Hyp Ref Expression
1 f1oeq3 B = C H : A 1-1 onto B H : A 1-1 onto C
2 1 anbi1d B = C H : A 1-1 onto B x A y A x R y H x S H y H : A 1-1 onto C x A y A x R y H x S H y
3 df-isom H Isom R , S A B H : A 1-1 onto B x A y A x R y H x S H y
4 df-isom H Isom R , S A C H : A 1-1 onto C x A y A x R y H x S H y
5 2 3 4 3bitr4g B = C H Isom R , S A B H Isom R , S A C