Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
isof1o
Next ⟩
isof1oidb
Metamath Proof Explorer
Ascii
Unicode
Theorem
isof1o
Description:
An isomorphism is a one-to-one onto function.
(Contributed by
NM
, 27-Apr-2004)
Ref
Expression
Assertion
isof1o
⊢
H
Isom
R
,
S
A
B
→
H
:
A
⟶
1-1 onto
B
Proof
Step
Hyp
Ref
Expression
1
df-isom
⊢
H
Isom
R
,
S
A
B
↔
H
:
A
⟶
1-1 onto
B
∧
∀
x
∈
A
∀
y
∈
A
x
R
y
↔
H
⁡
x
S
H
⁡
y
2
1
simplbi
⊢
H
Isom
R
,
S
A
B
→
H
:
A
⟶
1-1 onto
B