Metamath Proof Explorer


Theorem isofr

Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isofr H Isom R , S A B R Fr A S Fr B

Proof

Step Hyp Ref Expression
1 isocnv H Isom R , S A B H -1 Isom S , R B A
2 id H -1 Isom S , R B A H -1 Isom S , R B A
3 isof1o H -1 Isom S , R B A H -1 : B 1-1 onto A
4 f1ofun H -1 : B 1-1 onto A Fun H -1
5 vex x V
6 5 funimaex Fun H -1 H -1 x V
7 3 4 6 3syl H -1 Isom S , R B A H -1 x V
8 2 7 isofrlem H -1 Isom S , R B A R Fr A S Fr B
9 1 8 syl H Isom R , S A B R Fr A S Fr B
10 id H Isom R , S A B H Isom R , S A B
11 isof1o H Isom R , S A B H : A 1-1 onto B
12 f1ofun H : A 1-1 onto B Fun H
13 5 funimaex Fun H H x V
14 11 12 13 3syl H Isom R , S A B H x V
15 10 14 isofrlem H Isom R , S A B S Fr B R Fr A
16 9 15 impbid H Isom R , S A B R Fr A S Fr B