Metamath Proof Explorer


Theorem isofr2

Description: A weak form of isofr that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isofr2 H Isom R , S A B B V S Fr B R Fr A

Proof

Step Hyp Ref Expression
1 simpl H Isom R , S A B B V H Isom R , S A B
2 imassrn H x ran H
3 isof1o H Isom R , S A B H : A 1-1 onto B
4 f1of H : A 1-1 onto B H : A B
5 frn H : A B ran H B
6 3 4 5 3syl H Isom R , S A B ran H B
7 2 6 sstrid H Isom R , S A B H x B
8 ssexg H x B B V H x V
9 7 8 sylan H Isom R , S A B B V H x V
10 1 9 isofrlem H Isom R , S A B B V S Fr B R Fr A