Metamath Proof Explorer


Theorem isofrlem

Description: Lemma for isofr . (Contributed by NM, 29-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses isofrlem.1 φHIsomR,SAB
isofrlem.2 φHxV
Assertion isofrlem φSFrBRFrA

Proof

Step Hyp Ref Expression
1 isofrlem.1 φHIsomR,SAB
2 isofrlem.2 φHxV
3 isof1o HIsomR,SABH:A1-1 ontoB
4 1 3 syl φH:A1-1 ontoB
5 f1ofn H:A1-1 ontoBHFnA
6 n0 xyyx
7 fnfvima HFnAxAyxHyHx
8 7 ne0d HFnAxAyxHx
9 8 3expia HFnAxAyxHx
10 9 exlimdv HFnAxAyyxHx
11 6 10 biimtrid HFnAxAxHx
12 11 expimpd HFnAxAxHx
13 5 12 syl H:A1-1 ontoBxAxHx
14 f1ofo H:A1-1 ontoBH:AontoB
15 imassrn HxranH
16 forn H:AontoBranH=B
17 15 16 sseqtrid H:AontoBHxB
18 14 17 syl H:A1-1 ontoBHxB
19 13 18 jctild H:A1-1 ontoBxAxHxBHx
20 4 19 syl φxAxHxBHx
21 dffr3 SFrBzzBzwzzS-1w=
22 sseq1 z=HxzBHxB
23 neeq1 z=HxzHx
24 22 23 anbi12d z=HxzBzHxBHx
25 ineq1 z=HxzS-1w=HxS-1w
26 25 eqeq1d z=HxzS-1w=HxS-1w=
27 26 rexeqbi1dv z=HxwzzS-1w=wHxHxS-1w=
28 24 27 imbi12d z=HxzBzwzzS-1w=HxBHxwHxHxS-1w=
29 28 spcgv HxVzzBzwzzS-1w=HxBHxwHxHxS-1w=
30 2 29 syl φzzBzwzzS-1w=HxBHxwHxHxS-1w=
31 21 30 biimtrid φSFrBHxBHxwHxHxS-1w=
32 20 31 syl5d φSFrBxAxwHxHxS-1w=
33 4 adantr φxAH:A1-1 ontoB
34 f1ofun H:A1-1 ontoBFunH
35 33 34 syl φxAFunH
36 simpl wHxHxS-1w=wHx
37 fvelima FunHwHxyxHy=w
38 35 36 37 syl2an φxAwHxHxS-1w=yxHy=w
39 simpr wHxHxS-1w=HxS-1w=
40 ssel xAyxyA
41 40 imdistani xAyxxAyA
42 isomin HIsomR,SABxAyAxR-1y=HxS-1Hy=
43 1 41 42 syl2an φxAyxxR-1y=HxS-1Hy=
44 sneq Hy=wHy=w
45 44 imaeq2d Hy=wS-1Hy=S-1w
46 45 ineq2d Hy=wHxS-1Hy=HxS-1w
47 46 eqeq1d Hy=wHxS-1Hy=HxS-1w=
48 43 47 sylan9bb φxAyxHy=wxR-1y=HxS-1w=
49 39 48 imbitrrid φxAyxHy=wwHxHxS-1w=xR-1y=
50 49 exp42 φxAyxHy=wwHxHxS-1w=xR-1y=
51 50 imp φxAyxHy=wwHxHxS-1w=xR-1y=
52 51 com3l yxHy=wφxAwHxHxS-1w=xR-1y=
53 52 com4t φxAwHxHxS-1w=yxHy=wxR-1y=
54 53 imp φxAwHxHxS-1w=yxHy=wxR-1y=
55 54 reximdvai φxAwHxHxS-1w=yxHy=wyxxR-1y=
56 38 55 mpd φxAwHxHxS-1w=yxxR-1y=
57 56 rexlimdvaa φxAwHxHxS-1w=yxxR-1y=
58 57 ex φxAwHxHxS-1w=yxxR-1y=
59 58 adantrd φxAxwHxHxS-1w=yxxR-1y=
60 59 a2d φxAxwHxHxS-1w=xAxyxxR-1y=
61 32 60 syld φSFrBxAxyxxR-1y=
62 61 alrimdv φSFrBxxAxyxxR-1y=
63 dffr3 RFrAxxAxyxxR-1y=
64 62 63 imbitrrdi φSFrBRFrA