Description: Lemma for isofr . (Contributed by NM, 29-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isofrlem.1 | |
|
isofrlem.2 | |
||
Assertion | isofrlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofrlem.1 | |
|
2 | isofrlem.2 | |
|
3 | isof1o | |
|
4 | 1 3 | syl | |
5 | f1ofn | |
|
6 | n0 | |
|
7 | fnfvima | |
|
8 | 7 | ne0d | |
9 | 8 | 3expia | |
10 | 9 | exlimdv | |
11 | 6 10 | biimtrid | |
12 | 11 | expimpd | |
13 | 5 12 | syl | |
14 | f1ofo | |
|
15 | imassrn | |
|
16 | forn | |
|
17 | 15 16 | sseqtrid | |
18 | 14 17 | syl | |
19 | 13 18 | jctild | |
20 | 4 19 | syl | |
21 | dffr3 | |
|
22 | sseq1 | |
|
23 | neeq1 | |
|
24 | 22 23 | anbi12d | |
25 | ineq1 | |
|
26 | 25 | eqeq1d | |
27 | 26 | rexeqbi1dv | |
28 | 24 27 | imbi12d | |
29 | 28 | spcgv | |
30 | 2 29 | syl | |
31 | 21 30 | biimtrid | |
32 | 20 31 | syl5d | |
33 | 4 | adantr | |
34 | f1ofun | |
|
35 | 33 34 | syl | |
36 | simpl | |
|
37 | fvelima | |
|
38 | 35 36 37 | syl2an | |
39 | simpr | |
|
40 | ssel | |
|
41 | 40 | imdistani | |
42 | isomin | |
|
43 | 1 41 42 | syl2an | |
44 | sneq | |
|
45 | 44 | imaeq2d | |
46 | 45 | ineq2d | |
47 | 46 | eqeq1d | |
48 | 43 47 | sylan9bb | |
49 | 39 48 | imbitrrid | |
50 | 49 | exp42 | |
51 | 50 | imp | |
52 | 51 | com3l | |
53 | 52 | com4t | |
54 | 53 | imp | |
55 | 54 | reximdvai | |
56 | 38 55 | mpd | |
57 | 56 | rexlimdvaa | |
58 | 57 | ex | |
59 | 58 | adantrd | |
60 | 59 | a2d | |
61 | 32 60 | syld | |
62 | 61 | alrimdv | |
63 | dffr3 | |
|
64 | 62 63 | imbitrrdi | |