Step |
Hyp |
Ref |
Expression |
1 |
|
isofrlem.1 |
|
2 |
|
isofrlem.2 |
|
3 |
|
isof1o |
|
4 |
1 3
|
syl |
|
5 |
|
f1ofn |
|
6 |
|
n0 |
|
7 |
|
fnfvima |
|
8 |
7
|
ne0d |
|
9 |
8
|
3expia |
|
10 |
9
|
exlimdv |
|
11 |
6 10
|
syl5bi |
|
12 |
11
|
expimpd |
|
13 |
5 12
|
syl |
|
14 |
|
f1ofo |
|
15 |
|
imassrn |
|
16 |
|
forn |
|
17 |
15 16
|
sseqtrid |
|
18 |
14 17
|
syl |
|
19 |
13 18
|
jctild |
|
20 |
4 19
|
syl |
|
21 |
|
dffr3 |
|
22 |
|
sseq1 |
|
23 |
|
neeq1 |
|
24 |
22 23
|
anbi12d |
|
25 |
|
ineq1 |
|
26 |
25
|
eqeq1d |
|
27 |
26
|
rexeqbi1dv |
|
28 |
24 27
|
imbi12d |
|
29 |
28
|
spcgv |
|
30 |
2 29
|
syl |
|
31 |
21 30
|
syl5bi |
|
32 |
20 31
|
syl5d |
|
33 |
4
|
adantr |
|
34 |
|
f1ofun |
|
35 |
33 34
|
syl |
|
36 |
|
simpl |
|
37 |
|
fvelima |
|
38 |
35 36 37
|
syl2an |
|
39 |
|
simpr |
|
40 |
|
ssel |
|
41 |
40
|
imdistani |
|
42 |
|
isomin |
|
43 |
1 41 42
|
syl2an |
|
44 |
|
sneq |
|
45 |
44
|
imaeq2d |
|
46 |
45
|
ineq2d |
|
47 |
46
|
eqeq1d |
|
48 |
43 47
|
sylan9bb |
|
49 |
39 48
|
syl5ibr |
|
50 |
49
|
exp42 |
|
51 |
50
|
imp |
|
52 |
51
|
com3l |
|
53 |
52
|
com4t |
|
54 |
53
|
imp |
|
55 |
54
|
reximdvai |
|
56 |
38 55
|
mpd |
|
57 |
56
|
rexlimdvaa |
|
58 |
57
|
ex |
|
59 |
58
|
adantrd |
|
60 |
59
|
a2d |
|
61 |
32 60
|
syld |
|
62 |
61
|
alrimdv |
|
63 |
|
dffr3 |
|
64 |
62 63
|
syl6ibr |
|