| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isofrlem.1 |
|
| 2 |
|
isofrlem.2 |
|
| 3 |
|
isof1o |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
f1ofn |
|
| 6 |
|
n0 |
|
| 7 |
|
fnfvima |
|
| 8 |
7
|
ne0d |
|
| 9 |
8
|
3expia |
|
| 10 |
9
|
exlimdv |
|
| 11 |
6 10
|
biimtrid |
|
| 12 |
11
|
expimpd |
|
| 13 |
5 12
|
syl |
|
| 14 |
|
f1ofo |
|
| 15 |
|
imassrn |
|
| 16 |
|
forn |
|
| 17 |
15 16
|
sseqtrid |
|
| 18 |
14 17
|
syl |
|
| 19 |
13 18
|
jctild |
|
| 20 |
4 19
|
syl |
|
| 21 |
|
dffr3 |
|
| 22 |
|
sseq1 |
|
| 23 |
|
neeq1 |
|
| 24 |
22 23
|
anbi12d |
|
| 25 |
|
ineq1 |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
26
|
rexeqbi1dv |
|
| 28 |
24 27
|
imbi12d |
|
| 29 |
28
|
spcgv |
|
| 30 |
2 29
|
syl |
|
| 31 |
21 30
|
biimtrid |
|
| 32 |
20 31
|
syl5d |
|
| 33 |
4
|
adantr |
|
| 34 |
|
f1ofun |
|
| 35 |
33 34
|
syl |
|
| 36 |
|
simpl |
|
| 37 |
|
fvelima |
|
| 38 |
35 36 37
|
syl2an |
|
| 39 |
|
simpr |
|
| 40 |
|
ssel |
|
| 41 |
40
|
imdistani |
|
| 42 |
|
isomin |
|
| 43 |
1 41 42
|
syl2an |
|
| 44 |
|
sneq |
|
| 45 |
44
|
imaeq2d |
|
| 46 |
45
|
ineq2d |
|
| 47 |
46
|
eqeq1d |
|
| 48 |
43 47
|
sylan9bb |
|
| 49 |
39 48
|
imbitrrid |
|
| 50 |
49
|
exp42 |
|
| 51 |
50
|
imp |
|
| 52 |
51
|
com3l |
|
| 53 |
52
|
com4t |
|
| 54 |
53
|
imp |
|
| 55 |
54
|
reximdvai |
|
| 56 |
38 55
|
mpd |
|
| 57 |
56
|
rexlimdvaa |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
adantrd |
|
| 60 |
59
|
a2d |
|
| 61 |
32 60
|
syld |
|
| 62 |
61
|
alrimdv |
|
| 63 |
|
dffr3 |
|
| 64 |
62 63
|
imbitrrdi |
|