Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
isohom
Next ⟩
isoco
Metamath Proof Explorer
Ascii
Unicode
Theorem
isohom
Description:
An isomorphism is a homomorphism.
(Contributed by
Mario Carneiro
, 27-Jan-2017)
Ref
Expression
Hypotheses
isohom.b
⊢
B
=
Base
C
isohom.h
⊢
H
=
Hom
⁡
C
isohom.i
⊢
I
=
Iso
⁡
C
isohom.c
⊢
φ
→
C
∈
Cat
isohom.x
⊢
φ
→
X
∈
B
isohom.y
⊢
φ
→
Y
∈
B
Assertion
isohom
⊢
φ
→
X
I
Y
⊆
X
H
Y
Proof
Step
Hyp
Ref
Expression
1
isohom.b
⊢
B
=
Base
C
2
isohom.h
⊢
H
=
Hom
⁡
C
3
isohom.i
⊢
I
=
Iso
⁡
C
4
isohom.c
⊢
φ
→
C
∈
Cat
5
isohom.x
⊢
φ
→
X
∈
B
6
isohom.y
⊢
φ
→
Y
∈
B
7
eqid
⊢
Inv
⁡
C
=
Inv
⁡
C
8
1
7
4
5
6
3
isoval
⊢
φ
→
X
I
Y
=
dom
⁡
X
Inv
⁡
C
Y
9
1
7
4
5
6
2
invss
⊢
φ
→
X
Inv
⁡
C
Y
⊆
X
H
Y
×
Y
H
X
10
dmss
⊢
X
Inv
⁡
C
Y
⊆
X
H
Y
×
Y
H
X
→
dom
⁡
X
Inv
⁡
C
Y
⊆
dom
⁡
X
H
Y
×
Y
H
X
11
9
10
syl
⊢
φ
→
dom
⁡
X
Inv
⁡
C
Y
⊆
dom
⁡
X
H
Y
×
Y
H
X
12
8
11
eqsstrd
⊢
φ
→
X
I
Y
⊆
dom
⁡
X
H
Y
×
Y
H
X
13
dmxpss
⊢
dom
⁡
X
H
Y
×
Y
H
X
⊆
X
H
Y
14
12
13
sstrdi
⊢
φ
→
X
I
Y
⊆
X
H
Y