Metamath Proof Explorer


Theorem isoid

Description: Identity law for isomorphism. Proposition 6.30(1) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)

Ref Expression
Assertion isoid I A Isom R , R A A

Proof

Step Hyp Ref Expression
1 f1oi I A : A 1-1 onto A
2 fvresi x A I A x = x
3 fvresi y A I A y = y
4 2 3 breqan12d x A y A I A x R I A y x R y
5 4 bicomd x A y A x R y I A x R I A y
6 5 rgen2 x A y A x R y I A x R I A y
7 df-isom I A Isom R , R A A I A : A 1-1 onto A x A y A x R y I A x R I A y
8 1 6 7 mpbir2an I A Isom R , R A A