Metamath Proof Explorer


Theorem isoini

Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of TakeutiZaring p. 33. (Contributed by NM, 20-Apr-2004)

Ref Expression
Assertion isoini H Isom R , S A B D A H A R -1 D = B S -1 H D

Proof

Step Hyp Ref Expression
1 dfima2 H A R -1 D = y | x A R -1 D x H y
2 elin y B S -1 H D y B y S -1 H D
3 isof1o H Isom R , S A B H : A 1-1 onto B
4 f1ofo H : A 1-1 onto B H : A onto B
5 forn H : A onto B ran H = B
6 5 eleq2d H : A onto B y ran H y B
7 3 4 6 3syl H Isom R , S A B y ran H y B
8 f1ofn H : A 1-1 onto B H Fn A
9 fvelrnb H Fn A y ran H x A H x = y
10 3 8 9 3syl H Isom R , S A B y ran H x A H x = y
11 7 10 bitr3d H Isom R , S A B y B x A H x = y
12 fvex H D V
13 vex y V
14 13 eliniseg H D V y S -1 H D y S H D
15 12 14 mp1i H Isom R , S A B y S -1 H D y S H D
16 11 15 anbi12d H Isom R , S A B y B y S -1 H D x A H x = y y S H D
17 16 adantr H Isom R , S A B D A y B y S -1 H D x A H x = y y S H D
18 elin x A R -1 D x A x R -1 D
19 vex x V
20 19 eliniseg D A x R -1 D x R D
21 20 anbi2d D A x A x R -1 D x A x R D
22 18 21 bitrid D A x A R -1 D x A x R D
23 22 anbi1d D A x A R -1 D x H y x A x R D x H y
24 anass x A x R D x H y x A x R D x H y
25 23 24 bitrdi D A x A R -1 D x H y x A x R D x H y
26 25 adantl H Isom R , S A B D A x A R -1 D x H y x A x R D x H y
27 isorel H Isom R , S A B x A D A x R D H x S H D
28 3 8 syl H Isom R , S A B H Fn A
29 fnbrfvb H Fn A x A H x = y x H y
30 29 bicomd H Fn A x A x H y H x = y
31 28 30 sylan H Isom R , S A B x A x H y H x = y
32 31 adantrr H Isom R , S A B x A D A x H y H x = y
33 27 32 anbi12d H Isom R , S A B x A D A x R D x H y H x S H D H x = y
34 ancom H x S H D H x = y H x = y H x S H D
35 breq1 H x = y H x S H D y S H D
36 35 pm5.32i H x = y H x S H D H x = y y S H D
37 34 36 bitri H x S H D H x = y H x = y y S H D
38 33 37 bitrdi H Isom R , S A B x A D A x R D x H y H x = y y S H D
39 38 exp32 H Isom R , S A B x A D A x R D x H y H x = y y S H D
40 39 com23 H Isom R , S A B D A x A x R D x H y H x = y y S H D
41 40 imp H Isom R , S A B D A x A x R D x H y H x = y y S H D
42 41 pm5.32d H Isom R , S A B D A x A x R D x H y x A H x = y y S H D
43 26 42 bitrd H Isom R , S A B D A x A R -1 D x H y x A H x = y y S H D
44 43 rexbidv2 H Isom R , S A B D A x A R -1 D x H y x A H x = y y S H D
45 r19.41v x A H x = y y S H D x A H x = y y S H D
46 44 45 bitrdi H Isom R , S A B D A x A R -1 D x H y x A H x = y y S H D
47 17 46 bitr4d H Isom R , S A B D A y B y S -1 H D x A R -1 D x H y
48 2 47 bitrid H Isom R , S A B D A y B S -1 H D x A R -1 D x H y
49 48 abbi2dv H Isom R , S A B D A B S -1 H D = y | x A R -1 D x H y
50 1 49 eqtr4id H Isom R , S A B D A H A R -1 D = B S -1 H D