| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neq0 |
|
| 2 |
|
vex |
|
| 3 |
2
|
elima |
|
| 4 |
|
ssel |
|
| 5 |
|
isof1o |
|
| 6 |
|
f1ofn |
|
| 7 |
|
fnbrfvb |
|
| 8 |
7
|
ex |
|
| 9 |
5 6 8
|
3syl |
|
| 10 |
4 9
|
syl9r |
|
| 11 |
10
|
imp31 |
|
| 12 |
11
|
rexbidva |
|
| 13 |
3 12
|
bitr4id |
|
| 14 |
|
fvex |
|
| 15 |
2
|
eliniseg |
|
| 16 |
14 15
|
mp1i |
|
| 17 |
13 16
|
anbi12d |
|
| 18 |
|
elin |
|
| 19 |
|
r19.41v |
|
| 20 |
17 18 19
|
3bitr4g |
|
| 21 |
20
|
adantrr |
|
| 22 |
|
breq1 |
|
| 23 |
22
|
biimpar |
|
| 24 |
|
vex |
|
| 25 |
24
|
eliniseg |
|
| 26 |
25
|
ad2antll |
|
| 27 |
|
isorel |
|
| 28 |
26 27
|
bitrd |
|
| 29 |
23 28
|
imbitrrid |
|
| 30 |
29
|
exp32 |
|
| 31 |
4 30
|
syl9r |
|
| 32 |
31
|
com34 |
|
| 33 |
32
|
imp32 |
|
| 34 |
33
|
reximdvai |
|
| 35 |
21 34
|
sylbid |
|
| 36 |
|
elin |
|
| 37 |
36
|
exbii |
|
| 38 |
|
neq0 |
|
| 39 |
|
df-rex |
|
| 40 |
37 38 39
|
3bitr4i |
|
| 41 |
35 40
|
imbitrrdi |
|
| 42 |
41
|
exlimdv |
|
| 43 |
1 42
|
biimtrid |
|
| 44 |
43
|
con4d |
|
| 45 |
5 6
|
syl |
|
| 46 |
|
fnfvima |
|
| 47 |
46
|
3expia |
|
| 48 |
47
|
adantrr |
|
| 49 |
45 48
|
sylan |
|
| 50 |
49
|
adantrd |
|
| 51 |
27
|
biimpd |
|
| 52 |
|
fvex |
|
| 53 |
52
|
eliniseg |
|
| 54 |
14 53
|
ax-mp |
|
| 55 |
51 54
|
imbitrrdi |
|
| 56 |
26 55
|
sylbid |
|
| 57 |
56
|
exp32 |
|
| 58 |
4 57
|
syl9r |
|
| 59 |
58
|
com34 |
|
| 60 |
59
|
imp32 |
|
| 61 |
60
|
impd |
|
| 62 |
50 61
|
jcad |
|
| 63 |
|
elin |
|
| 64 |
62 36 63
|
3imtr4g |
|
| 65 |
|
n0i |
|
| 66 |
64 65
|
syl6 |
|
| 67 |
66
|
exlimdv |
|
| 68 |
38 67
|
biimtrid |
|
| 69 |
44 68
|
impcon4bid |
|