Metamath Proof Explorer


Theorem isoml

Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses isoml.b B = Base K
isoml.l ˙ = K
isoml.j ˙ = join K
isoml.m ˙ = meet K
isoml.o ˙ = oc K
Assertion isoml K OML K OL x B y B x ˙ y y = x ˙ y ˙ ˙ x

Proof

Step Hyp Ref Expression
1 isoml.b B = Base K
2 isoml.l ˙ = K
3 isoml.j ˙ = join K
4 isoml.m ˙ = meet K
5 isoml.o ˙ = oc K
6 fveq2 k = K Base k = Base K
7 6 1 eqtr4di k = K Base k = B
8 fveq2 k = K k = K
9 8 2 eqtr4di k = K k = ˙
10 9 breqd k = K x k y x ˙ y
11 fveq2 k = K join k = join K
12 11 3 eqtr4di k = K join k = ˙
13 eqidd k = K x = x
14 fveq2 k = K meet k = meet K
15 14 4 eqtr4di k = K meet k = ˙
16 eqidd k = K y = y
17 fveq2 k = K oc k = oc K
18 17 5 eqtr4di k = K oc k = ˙
19 18 fveq1d k = K oc k x = ˙ x
20 15 16 19 oveq123d k = K y meet k oc k x = y ˙ ˙ x
21 12 13 20 oveq123d k = K x join k y meet k oc k x = x ˙ y ˙ ˙ x
22 21 eqeq2d k = K y = x join k y meet k oc k x y = x ˙ y ˙ ˙ x
23 10 22 imbi12d k = K x k y y = x join k y meet k oc k x x ˙ y y = x ˙ y ˙ ˙ x
24 7 23 raleqbidv k = K y Base k x k y y = x join k y meet k oc k x y B x ˙ y y = x ˙ y ˙ ˙ x
25 7 24 raleqbidv k = K x Base k y Base k x k y y = x join k y meet k oc k x x B y B x ˙ y y = x ˙ y ˙ ˙ x
26 df-oml OML = k OL | x Base k y Base k x k y y = x join k y meet k oc k x
27 25 26 elrab2 K OML K OL x B y B x ˙ y y = x ˙ y ˙ ˙ x