Metamath Proof Explorer


Theorem isomliN

Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011) (New usage is discouraged.)

Ref Expression
Hypotheses isomli.0 K OL
isomli.b B = Base K
isomli.l ˙ = K
isomli.j ˙ = join K
isomli.m ˙ = meet K
isomli.o ˙ = oc K
isomli.7 x B y B x ˙ y y = x ˙ y ˙ ˙ x
Assertion isomliN K OML

Proof

Step Hyp Ref Expression
1 isomli.0 K OL
2 isomli.b B = Base K
3 isomli.l ˙ = K
4 isomli.j ˙ = join K
5 isomli.m ˙ = meet K
6 isomli.o ˙ = oc K
7 isomli.7 x B y B x ˙ y y = x ˙ y ˙ ˙ x
8 7 rgen2 x B y B x ˙ y y = x ˙ y ˙ ˙ x
9 2 3 4 5 6 isoml K OML K OL x B y B x ˙ y y = x ˙ y ˙ ˙ x
10 1 8 9 mpbir2an K OML