Metamath Proof Explorer


Theorem isopn2

Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006)

Ref Expression
Hypothesis iscld.1 X = J
Assertion isopn2 J Top S X S J X S Clsd J

Proof

Step Hyp Ref Expression
1 iscld.1 X = J
2 difss X S X
3 1 iscld2 J Top X S X X S Clsd J X X S J
4 2 3 mpan2 J Top X S Clsd J X X S J
5 dfss4 S X X X S = S
6 5 biimpi S X X X S = S
7 6 eleq1d S X X X S J S J
8 4 7 sylan9bb J Top S X X S Clsd J S J
9 8 bicomd J Top S X S J X S Clsd J