Metamath Proof Explorer


Theorem isopn3

Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X = J
Assertion isopn3 J Top S X S J int J S = S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 ntrval J Top S X int J S = J 𝒫 S
3 inss2 J 𝒫 S 𝒫 S
4 3 unissi J 𝒫 S 𝒫 S
5 unipw 𝒫 S = S
6 4 5 sseqtri J 𝒫 S S
7 6 a1i S J J 𝒫 S S
8 id S J S J
9 pwidg S J S 𝒫 S
10 8 9 elind S J S J 𝒫 S
11 elssuni S J 𝒫 S S J 𝒫 S
12 10 11 syl S J S J 𝒫 S
13 7 12 eqssd S J J 𝒫 S = S
14 2 13 sylan9eq J Top S X S J int J S = S
15 14 ex J Top S X S J int J S = S
16 1 ntropn J Top S X int J S J
17 eleq1 int J S = S int J S J S J
18 16 17 syl5ibcom J Top S X int J S = S S J
19 15 18 impbid J Top S X S J int J S = S