Database
BASIC TOPOLOGY
Topology
Closure and interior
isopn3i
Next ⟩
elcls3
Metamath Proof Explorer
Ascii
Unicode
Theorem
isopn3i
Description:
An open subset equals its own interior.
(Contributed by
Mario Carneiro
, 30-Dec-2016)
Ref
Expression
Assertion
isopn3i
⊢
J
∈
Top
∧
S
∈
J
→
int
⁡
J
⁡
S
=
S
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
J
∈
Top
∧
S
∈
J
→
S
∈
J
2
elssuni
⊢
S
∈
J
→
S
⊆
⋃
J
3
eqid
⊢
⋃
J
=
⋃
J
4
3
isopn3
⊢
J
∈
Top
∧
S
⊆
⋃
J
→
S
∈
J
↔
int
⁡
J
⁡
S
=
S
5
2
4
sylan2
⊢
J
∈
Top
∧
S
∈
J
→
S
∈
J
↔
int
⁡
J
⁡
S
=
S
6
1
5
mpbid
⊢
J
∈
Top
∧
S
∈
J
→
int
⁡
J
⁡
S
=
S