Metamath Proof Explorer


Theorem isopn3i

Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion isopn3i J Top S J int J S = S

Proof

Step Hyp Ref Expression
1 simpr J Top S J S J
2 elssuni S J S J
3 eqid J = J
4 3 isopn3 J Top S J S J int J S = S
5 2 4 sylan2 J Top S J S J int J S = S
6 1 5 mpbid J Top S J int J S = S