Metamath Proof Explorer


Theorem isopo

Description: An isomorphism preserves the property of being a partial order. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion isopo H Isom R , S A B R Po A S Po B

Proof

Step Hyp Ref Expression
1 isocnv H Isom R , S A B H -1 Isom S , R B A
2 isopolem H -1 Isom S , R B A R Po A S Po B
3 1 2 syl H Isom R , S A B R Po A S Po B
4 isopolem H Isom R , S A B S Po B R Po A
5 3 4 impbid H Isom R , S A B R Po A S Po B