Metamath Proof Explorer


Theorem isopolem

Description: Lemma for isopo . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion isopolem H Isom R , S A B S Po B R Po A

Proof

Step Hyp Ref Expression
1 isof1o H Isom R , S A B H : A 1-1 onto B
2 f1of H : A 1-1 onto B H : A B
3 ffvelrn H : A B d A H d B
4 3 ex H : A B d A H d B
5 ffvelrn H : A B e A H e B
6 5 ex H : A B e A H e B
7 ffvelrn H : A B f A H f B
8 7 ex H : A B f A H f B
9 4 6 8 3anim123d H : A B d A e A f A H d B H e B H f B
10 1 2 9 3syl H Isom R , S A B d A e A f A H d B H e B H f B
11 10 imp H Isom R , S A B d A e A f A H d B H e B H f B
12 breq12 a = H d a = H d a S a H d S H d
13 12 anidms a = H d a S a H d S H d
14 13 notbid a = H d ¬ a S a ¬ H d S H d
15 breq1 a = H d a S b H d S b
16 15 anbi1d a = H d a S b b S c H d S b b S c
17 breq1 a = H d a S c H d S c
18 16 17 imbi12d a = H d a S b b S c a S c H d S b b S c H d S c
19 14 18 anbi12d a = H d ¬ a S a a S b b S c a S c ¬ H d S H d H d S b b S c H d S c
20 breq2 b = H e H d S b H d S H e
21 breq1 b = H e b S c H e S c
22 20 21 anbi12d b = H e H d S b b S c H d S H e H e S c
23 22 imbi1d b = H e H d S b b S c H d S c H d S H e H e S c H d S c
24 23 anbi2d b = H e ¬ H d S H d H d S b b S c H d S c ¬ H d S H d H d S H e H e S c H d S c
25 breq2 c = H f H e S c H e S H f
26 25 anbi2d c = H f H d S H e H e S c H d S H e H e S H f
27 breq2 c = H f H d S c H d S H f
28 26 27 imbi12d c = H f H d S H e H e S c H d S c H d S H e H e S H f H d S H f
29 28 anbi2d c = H f ¬ H d S H d H d S H e H e S c H d S c ¬ H d S H d H d S H e H e S H f H d S H f
30 19 24 29 rspc3v H d B H e B H f B a B b B c B ¬ a S a a S b b S c a S c ¬ H d S H d H d S H e H e S H f H d S H f
31 11 30 syl H Isom R , S A B d A e A f A a B b B c B ¬ a S a a S b b S c a S c ¬ H d S H d H d S H e H e S H f H d S H f
32 simpl H Isom R , S A B d A e A f A H Isom R , S A B
33 simpr1 H Isom R , S A B d A e A f A d A
34 isorel H Isom R , S A B d A d A d R d H d S H d
35 32 33 33 34 syl12anc H Isom R , S A B d A e A f A d R d H d S H d
36 35 notbid H Isom R , S A B d A e A f A ¬ d R d ¬ H d S H d
37 simpr2 H Isom R , S A B d A e A f A e A
38 isorel H Isom R , S A B d A e A d R e H d S H e
39 32 33 37 38 syl12anc H Isom R , S A B d A e A f A d R e H d S H e
40 simpr3 H Isom R , S A B d A e A f A f A
41 isorel H Isom R , S A B e A f A e R f H e S H f
42 32 37 40 41 syl12anc H Isom R , S A B d A e A f A e R f H e S H f
43 39 42 anbi12d H Isom R , S A B d A e A f A d R e e R f H d S H e H e S H f
44 isorel H Isom R , S A B d A f A d R f H d S H f
45 32 33 40 44 syl12anc H Isom R , S A B d A e A f A d R f H d S H f
46 43 45 imbi12d H Isom R , S A B d A e A f A d R e e R f d R f H d S H e H e S H f H d S H f
47 36 46 anbi12d H Isom R , S A B d A e A f A ¬ d R d d R e e R f d R f ¬ H d S H d H d S H e H e S H f H d S H f
48 31 47 sylibrd H Isom R , S A B d A e A f A a B b B c B ¬ a S a a S b b S c a S c ¬ d R d d R e e R f d R f
49 48 ex H Isom R , S A B d A e A f A a B b B c B ¬ a S a a S b b S c a S c ¬ d R d d R e e R f d R f
50 49 com23 H Isom R , S A B a B b B c B ¬ a S a a S b b S c a S c d A e A f A ¬ d R d d R e e R f d R f
51 50 imp31 H Isom R , S A B a B b B c B ¬ a S a a S b b S c a S c d A e A f A ¬ d R d d R e e R f d R f
52 51 ralrimivvva H Isom R , S A B a B b B c B ¬ a S a a S b b S c a S c d A e A f A ¬ d R d d R e e R f d R f
53 52 ex H Isom R , S A B a B b B c B ¬ a S a a S b b S c a S c d A e A f A ¬ d R d d R e e R f d R f
54 df-po S Po B a B b B c B ¬ a S a a S b b S c a S c
55 df-po R Po A d A e A f A ¬ d R d d R e e R f d R f
56 53 54 55 3imtr4g H Isom R , S A B S Po B R Po A