Metamath Proof Explorer


Theorem isores1

Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013)

Ref Expression
Assertion isores1 H Isom R , S A B H Isom R A × A , S A B

Proof

Step Hyp Ref Expression
1 isocnv H Isom R , S A B H -1 Isom S , R B A
2 isores2 H -1 Isom S , R B A H -1 Isom S , R A × A B A
3 1 2 sylib H Isom R , S A B H -1 Isom S , R A × A B A
4 isocnv H -1 Isom S , R A × A B A H -1 -1 Isom R A × A , S A B
5 3 4 syl H Isom R , S A B H -1 -1 Isom R A × A , S A B
6 isof1o H Isom R , S A B H : A 1-1 onto B
7 f1orel H : A 1-1 onto B Rel H
8 dfrel2 Rel H H -1 -1 = H
9 isoeq1 H -1 -1 = H H -1 -1 Isom R A × A , S A B H Isom R A × A , S A B
10 8 9 sylbi Rel H H -1 -1 Isom R A × A , S A B H Isom R A × A , S A B
11 6 7 10 3syl H Isom R , S A B H -1 -1 Isom R A × A , S A B H Isom R A × A , S A B
12 5 11 mpbid H Isom R , S A B H Isom R A × A , S A B
13 isocnv H Isom R A × A , S A B H -1 Isom S , R A × A B A
14 13 2 sylibr H Isom R A × A , S A B H -1 Isom S , R B A
15 isocnv H -1 Isom S , R B A H -1 -1 Isom R , S A B
16 14 15 syl H Isom R A × A , S A B H -1 -1 Isom R , S A B
17 isof1o H Isom R A × A , S A B H : A 1-1 onto B
18 isoeq1 H -1 -1 = H H -1 -1 Isom R , S A B H Isom R , S A B
19 8 18 sylbi Rel H H -1 -1 Isom R , S A B H Isom R , S A B
20 17 7 19 3syl H Isom R A × A , S A B H -1 -1 Isom R , S A B H Isom R , S A B
21 16 20 mpbid H Isom R A × A , S A B H Isom R , S A B
22 12 21 impbii H Isom R , S A B H Isom R A × A , S A B