Metamath Proof Explorer


Theorem isores3

Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Assertion isores3 H Isom R , S A B K A X = H K H K Isom R , S K X

Proof

Step Hyp Ref Expression
1 f1of1 H : A 1-1 onto B H : A 1-1 B
2 f1ores H : A 1-1 B K A H K : K 1-1 onto H K
3 2 expcom K A H : A 1-1 B H K : K 1-1 onto H K
4 1 3 syl5 K A H : A 1-1 onto B H K : K 1-1 onto H K
5 ssralv K A a A b A a R b H a S H b a K b A a R b H a S H b
6 ssralv K A b A a R b H a S H b b K a R b H a S H b
7 6 adantr K A a K b A a R b H a S H b b K a R b H a S H b
8 fvres a K H K a = H a
9 fvres b K H K b = H b
10 8 9 breqan12d a K b K H K a S H K b H a S H b
11 10 adantll K A a K b K H K a S H K b H a S H b
12 11 bibi2d K A a K b K a R b H K a S H K b a R b H a S H b
13 12 biimprd K A a K b K a R b H a S H b a R b H K a S H K b
14 13 ralimdva K A a K b K a R b H a S H b b K a R b H K a S H K b
15 7 14 syld K A a K b A a R b H a S H b b K a R b H K a S H K b
16 15 ralimdva K A a K b A a R b H a S H b a K b K a R b H K a S H K b
17 5 16 syld K A a A b A a R b H a S H b a K b K a R b H K a S H K b
18 4 17 anim12d K A H : A 1-1 onto B a A b A a R b H a S H b H K : K 1-1 onto H K a K b K a R b H K a S H K b
19 df-isom H Isom R , S A B H : A 1-1 onto B a A b A a R b H a S H b
20 df-isom H K Isom R , S K H K H K : K 1-1 onto H K a K b K a R b H K a S H K b
21 18 19 20 3imtr4g K A H Isom R , S A B H K Isom R , S K H K
22 21 impcom H Isom R , S A B K A H K Isom R , S K H K
23 isoeq5 X = H K H K Isom R , S K X H K Isom R , S K H K
24 22 23 syl5ibrcom H Isom R , S A B K A X = H K H K Isom R , S K X
25 24 3impia H Isom R , S A B K A X = H K H K Isom R , S K X