Metamath Proof Explorer


Theorem isosctr

Description: Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017)

Ref Expression
Hypothesis isosctrlem3.1 F = x 0 , y 0 log y x
Assertion isosctr A B C A C B C A B A C = B C C A F B A = A B F C B

Proof

Step Hyp Ref Expression
1 isosctrlem3.1 F = x 0 , y 0 log y x
2 simp11 A B C A C B C A B A C = B C A
3 simp13 A B C A C B C A B A C = B C C
4 2 3 subcld A B C A C B C A B A C = B C A C
5 simp12 A B C A C B C A B A C = B C B
6 5 3 subcld A B C A C B C A B A C = B C B C
7 simp21 A B C A C B C A B A C = B C A C
8 2 3 7 subne0d A B C A C B C A B A C = B C A C 0
9 simp22 A B C A C B C A B A C = B C B C
10 5 3 9 subne0d A B C A C B C A B A C = B C B C 0
11 simp23 A B C A C B C A B A C = B C A B
12 subcan2 A B C A C = B C A = B
13 12 3ad2ant1 A B C A C B C A B A C = B C A C = B C A = B
14 13 necon3bid A B C A C B C A B A C = B C A C B C A B
15 11 14 mpbird A B C A C B C A B A C = B C A C B C
16 simp3 A B C A C B C A B A C = B C A C = B C
17 1 isosctrlem3 A C B C A C 0 B C 0 A C B C A C = B C A C F B - C - A C = A - C - B C F B C
18 4 6 8 10 15 16 17 syl231anc A B C A C B C A B A C = B C A C F B - C - A C = A - C - B C F B C
19 2 3 negsubdi2d A B C A C B C A B A C = B C A C = C A
20 5 2 3 nnncan2d A B C A C B C A B A C = B C B - C - A C = B A
21 19 20 oveq12d A B C A C B C A B A C = B C A C F B - C - A C = C A F B A
22 2 5 3 nnncan2d A B C A C B C A B A C = B C A - C - B C = A B
23 5 3 negsubdi2d A B C A C B C A B A C = B C B C = C B
24 22 23 oveq12d A B C A C B C A B A C = B C A - C - B C F B C = A B F C B
25 18 21 24 3eqtr3d A B C A C B C A B A C = B C C A F B A = A B F C B