Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|
2 |
|
simpl1 |
|
3 |
1 2
|
negsubd |
|
4 |
|
1rp |
|
5 |
4
|
a1i |
|
6 |
|
simpl3 |
|
7 |
|
simpl2 |
|
8 |
1 2 1
|
sub32d |
|
9 |
|
1m1e0 |
|
10 |
9
|
oveq1i |
|
11 |
|
df-neg |
|
12 |
10 11
|
eqtr4i |
|
13 |
8 12
|
eqtrdi |
|
14 |
|
1cnd |
|
15 |
|
simp1 |
|
16 |
14 15
|
subcld |
|
17 |
16
|
adantr |
|
18 |
|
ax-1cn |
|
19 |
|
subeq0 |
|
20 |
18 19
|
mpan |
|
21 |
20
|
biimpd |
|
22 |
21
|
con3dimp |
|
23 |
22
|
neqned |
|
24 |
23
|
3adant2 |
|
25 |
24
|
adantr |
|
26 |
17 25
|
recrecd |
|
27 |
14 16 24
|
div2negd |
|
28 |
27
|
adantr |
|
29 |
15
|
negcld |
|
30 |
29 16 24
|
cjdivd |
|
31 |
15
|
cjnegd |
|
32 |
|
fveq2 |
|
33 |
|
abs0 |
|
34 |
32 33
|
eqtrdi |
|
35 |
|
eqtr2 |
|
36 |
34 35
|
sylan2 |
|
37 |
|
ax-1ne0 |
|
38 |
|
neneq |
|
39 |
37 38
|
mp1i |
|
40 |
36 39
|
pm2.65da |
|
41 |
40
|
adantl |
|
42 |
|
df-ne |
|
43 |
|
oveq1 |
|
44 |
|
sq1 |
|
45 |
43 44
|
eqtrdi |
|
46 |
45
|
adantl |
|
47 |
|
absvalsq |
|
48 |
47
|
adantr |
|
49 |
46 48
|
eqtr3d |
|
50 |
49
|
3adant3 |
|
51 |
50
|
oveq1d |
|
52 |
|
simp1 |
|
53 |
52
|
cjcld |
|
54 |
|
simp3 |
|
55 |
53 52 54
|
divcan3d |
|
56 |
51 55
|
eqtrd |
|
57 |
42 56
|
syl3an3br |
|
58 |
41 57
|
mpd3an3 |
|
59 |
58
|
eqcomd |
|
60 |
59
|
3adant3 |
|
61 |
60
|
negeqd |
|
62 |
31 61
|
eqtrd |
|
63 |
62
|
oveq1d |
|
64 |
|
cjsub |
|
65 |
18 64
|
mpan |
|
66 |
|
1red |
|
67 |
66
|
cjred |
|
68 |
67
|
oveq1d |
|
69 |
65 68
|
eqtrd |
|
70 |
69
|
adantr |
|
71 |
59
|
oveq2d |
|
72 |
70 71
|
eqtrd |
|
73 |
72
|
3adant3 |
|
74 |
73
|
oveq2d |
|
75 |
30 63 74
|
3eqtrd |
|
76 |
40
|
3ad2ant2 |
|
77 |
76
|
neqned |
|
78 |
|
1cnd |
|
79 |
|
simpl |
|
80 |
|
simpr |
|
81 |
78 79 80
|
divnegd |
|
82 |
81
|
oveq1d |
|
83 |
15 77 82
|
syl2anc |
|
84 |
14
|
negcld |
|
85 |
84 15 77
|
divcld |
|
86 |
15 77
|
reccld |
|
87 |
14 86
|
subcld |
|
88 |
16 24
|
cjne0d |
|
89 |
73 88
|
eqnetrrd |
|
90 |
85 87 15 89 77
|
divcan5d |
|
91 |
84 15 77
|
divcan2d |
|
92 |
15 14 86
|
subdid |
|
93 |
15
|
mulid1d |
|
94 |
15 77
|
recidd |
|
95 |
93 94
|
oveq12d |
|
96 |
92 95
|
eqtrd |
|
97 |
91 96
|
oveq12d |
|
98 |
83 90 97
|
3eqtr2d |
|
99 |
|
subcl |
|
100 |
99
|
negnegd |
|
101 |
|
negsubdi2 |
|
102 |
101
|
negeqd |
|
103 |
100 102
|
eqtr3d |
|
104 |
15 14 103
|
syl2anc |
|
105 |
104
|
oveq2d |
|
106 |
75 98 105
|
3eqtrd |
|
107 |
106
|
adantr |
|
108 |
29 16 24
|
divcld |
|
109 |
108
|
adantr |
|
110 |
|
simpr |
|
111 |
109 110
|
reim0bd |
|
112 |
111
|
cjred |
|
113 |
112 111
|
eqeltrd |
|
114 |
107 113
|
eqeltrrd |
|
115 |
28 114
|
eqeltrrd |
|
116 |
16 24
|
recne0d |
|
117 |
116
|
adantr |
|
118 |
115 117
|
rereccld |
|
119 |
26 118
|
eqeltrrd |
|
120 |
|
1red |
|
121 |
119 120
|
resubcld |
|
122 |
13 121
|
eqeltrrd |
|
123 |
2 122
|
negrebd |
|
124 |
123
|
absord |
|
125 |
|
eqeq1 |
|
126 |
125
|
biimpd |
|
127 |
|
eqeq1 |
|
128 |
127
|
biimpd |
|
129 |
126 128
|
orim12d |
|
130 |
7 124 129
|
sylc |
|
131 |
130
|
ord |
|
132 |
6 131
|
mpd |
|
133 |
132 5
|
eqeltrrd |
|
134 |
5 133
|
rpaddcld |
|
135 |
3 134
|
eqeltrrd |
|
136 |
135
|
relogcld |
|
137 |
136
|
reim0d |
|
138 |
133 135
|
rpdivcld |
|
139 |
138
|
relogcld |
|
140 |
139
|
reim0d |
|
141 |
137 140
|
eqtr4d |
|
142 |
16 24
|
logcld |
|
143 |
142
|
adantr |
|
144 |
143
|
imcld |
|
145 |
144
|
recnd |
|
146 |
108
|
adantr |
|
147 |
15 77
|
negne0d |
|
148 |
29 16 147 24
|
divne0d |
|
149 |
148
|
adantr |
|
150 |
146 149
|
logcld |
|
151 |
150
|
imcld |
|
152 |
151
|
recnd |
|
153 |
106
|
fveq2d |
|
154 |
153
|
adantr |
|
155 |
|
logcj |
|
156 |
108 155
|
sylan |
|
157 |
16 24
|
reccld |
|
158 |
157 116
|
logcld |
|
159 |
158
|
negnegd |
|
160 |
|
isosctrlem1 |
|
161 |
|
logrec |
|
162 |
16 24 160 161
|
syl3anc |
|
163 |
162
|
negeqd |
|
164 |
27
|
fveq2d |
|
165 |
159 163 164
|
3eqtr4rd |
|
166 |
165
|
adantr |
|
167 |
154 156 166
|
3eqtr3rd |
|
168 |
167
|
fveq2d |
|
169 |
143
|
imnegd |
|
170 |
150
|
imcjd |
|
171 |
168 169 170
|
3eqtr3d |
|
172 |
145 152 171
|
neg11d |
|
173 |
141 172
|
pm2.61dane |
|