Metamath Proof Explorer


Theorem isose

Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion isose H Isom R , S A B R Se A S Se B

Proof

Step Hyp Ref Expression
1 id H Isom R , S A B H Isom R , S A B
2 isof1o H Isom R , S A B H : A 1-1 onto B
3 f1ofun H : A 1-1 onto B Fun H
4 vex x V
5 4 funimaex Fun H H x V
6 2 3 5 3syl H Isom R , S A B H x V
7 1 6 isoselem H Isom R , S A B R Se A S Se B
8 isocnv H Isom R , S A B H -1 Isom S , R B A
9 isof1o H -1 Isom S , R B A H -1 : B 1-1 onto A
10 f1ofun H -1 : B 1-1 onto A Fun H -1
11 4 funimaex Fun H -1 H -1 x V
12 8 9 10 11 4syl H Isom R , S A B H -1 x V
13 8 12 isoselem H Isom R , S A B S Se B R Se A
14 7 13 impbid H Isom R , S A B R Se A S Se B