Metamath Proof Explorer


Theorem isoselem

Description: Lemma for isose . (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Hypotheses isofrlem.1 φ H Isom R , S A B
isofrlem.2 φ H x V
Assertion isoselem φ R Se A S Se B

Proof

Step Hyp Ref Expression
1 isofrlem.1 φ H Isom R , S A B
2 isofrlem.2 φ H x V
3 dfse2 R Se A z A A R -1 z V
4 3 biimpi R Se A z A A R -1 z V
5 4 r19.21bi R Se A z A A R -1 z V
6 5 expcom z A R Se A A R -1 z V
7 6 adantl φ z A R Se A A R -1 z V
8 imaeq2 x = A R -1 z H x = H A R -1 z
9 8 eleq1d x = A R -1 z H x V H A R -1 z V
10 9 imbi2d x = A R -1 z φ H x V φ H A R -1 z V
11 10 2 vtoclg A R -1 z V φ H A R -1 z V
12 11 com12 φ A R -1 z V H A R -1 z V
13 12 adantr φ z A A R -1 z V H A R -1 z V
14 isoini H Isom R , S A B z A H A R -1 z = B S -1 H z
15 1 14 sylan φ z A H A R -1 z = B S -1 H z
16 15 eleq1d φ z A H A R -1 z V B S -1 H z V
17 13 16 sylibd φ z A A R -1 z V B S -1 H z V
18 7 17 syld φ z A R Se A B S -1 H z V
19 18 ralrimdva φ R Se A z A B S -1 H z V
20 isof1o H Isom R , S A B H : A 1-1 onto B
21 f1ofn H : A 1-1 onto B H Fn A
22 sneq y = H z y = H z
23 22 imaeq2d y = H z S -1 y = S -1 H z
24 23 ineq2d y = H z B S -1 y = B S -1 H z
25 24 eleq1d y = H z B S -1 y V B S -1 H z V
26 25 ralrn H Fn A y ran H B S -1 y V z A B S -1 H z V
27 1 20 21 26 4syl φ y ran H B S -1 y V z A B S -1 H z V
28 f1ofo H : A 1-1 onto B H : A onto B
29 forn H : A onto B ran H = B
30 1 20 28 29 4syl φ ran H = B
31 30 raleqdv φ y ran H B S -1 y V y B B S -1 y V
32 27 31 bitr3d φ z A B S -1 H z V y B B S -1 y V
33 19 32 sylibd φ R Se A y B B S -1 y V
34 dfse2 S Se B y B B S -1 y V
35 33 34 syl6ibr φ R Se A S Se B