Metamath Proof Explorer


Theorem isosolem

Description: Lemma for isoso . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion isosolem H Isom R , S A B S Or B R Or A

Proof

Step Hyp Ref Expression
1 isopolem H Isom R , S A B S Po B R Po A
2 isof1o H Isom R , S A B H : A 1-1 onto B
3 f1of H : A 1-1 onto B H : A B
4 ffvelrn H : A B c A H c B
5 4 ex H : A B c A H c B
6 ffvelrn H : A B d A H d B
7 6 ex H : A B d A H d B
8 5 7 anim12d H : A B c A d A H c B H d B
9 2 3 8 3syl H Isom R , S A B c A d A H c B H d B
10 9 imp H Isom R , S A B c A d A H c B H d B
11 breq1 a = H c a S b H c S b
12 eqeq1 a = H c a = b H c = b
13 breq2 a = H c b S a b S H c
14 11 12 13 3orbi123d a = H c a S b a = b b S a H c S b H c = b b S H c
15 breq2 b = H d H c S b H c S H d
16 eqeq2 b = H d H c = b H c = H d
17 breq1 b = H d b S H c H d S H c
18 15 16 17 3orbi123d b = H d H c S b H c = b b S H c H c S H d H c = H d H d S H c
19 14 18 rspc2v H c B H d B a B b B a S b a = b b S a H c S H d H c = H d H d S H c
20 10 19 syl H Isom R , S A B c A d A a B b B a S b a = b b S a H c S H d H c = H d H d S H c
21 isorel H Isom R , S A B c A d A c R d H c S H d
22 f1of1 H : A 1-1 onto B H : A 1-1 B
23 2 22 syl H Isom R , S A B H : A 1-1 B
24 f1fveq H : A 1-1 B c A d A H c = H d c = d
25 23 24 sylan H Isom R , S A B c A d A H c = H d c = d
26 25 bicomd H Isom R , S A B c A d A c = d H c = H d
27 isorel H Isom R , S A B d A c A d R c H d S H c
28 27 ancom2s H Isom R , S A B c A d A d R c H d S H c
29 21 26 28 3orbi123d H Isom R , S A B c A d A c R d c = d d R c H c S H d H c = H d H d S H c
30 20 29 sylibrd H Isom R , S A B c A d A a B b B a S b a = b b S a c R d c = d d R c
31 30 ralrimdvva H Isom R , S A B a B b B a S b a = b b S a c A d A c R d c = d d R c
32 1 31 anim12d H Isom R , S A B S Po B a B b B a S b a = b b S a R Po A c A d A c R d c = d d R c
33 df-so S Or B S Po B a B b B a S b a = b b S a
34 df-so R Or A R Po A c A d A c R d c = d d R c
35 32 33 34 3imtr4g H Isom R , S A B S Or B R Or A