Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
simpl |
|
3 |
|
f1oco |
|
4 |
1 2 3
|
syl2anr |
|
5 |
|
f1of |
|
6 |
5
|
ad2antrr |
|
7 |
|
simprl |
|
8 |
6 7
|
ffvelrnd |
|
9 |
|
simprr |
|
10 |
6 9
|
ffvelrnd |
|
11 |
|
simplrr |
|
12 |
|
breq1 |
|
13 |
|
fveq2 |
|
14 |
13
|
breq1d |
|
15 |
12 14
|
bibi12d |
|
16 |
|
breq2 |
|
17 |
|
fveq2 |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
bibi12d |
|
20 |
15 19
|
rspc2va |
|
21 |
8 10 11 20
|
syl21anc |
|
22 |
|
fvco3 |
|
23 |
6 7 22
|
syl2anc |
|
24 |
|
fvco3 |
|
25 |
6 9 24
|
syl2anc |
|
26 |
23 25
|
breq12d |
|
27 |
21 26
|
bitr4d |
|
28 |
27
|
bibi2d |
|
29 |
28
|
2ralbidva |
|
30 |
29
|
biimpd |
|
31 |
30
|
impancom |
|
32 |
31
|
imp |
|
33 |
4 32
|
jca |
|
34 |
|
df-isom |
|
35 |
|
df-isom |
|
36 |
34 35
|
anbi12i |
|
37 |
|
df-isom |
|
38 |
33 36 37
|
3imtr4i |
|