Metamath Proof Explorer


Theorem isowe2

Description: A weak form of isowe that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isowe2 H Isom R , S A B x H x V S We B R We A

Proof

Step Hyp Ref Expression
1 simpl H Isom R , S A B x H x V H Isom R , S A B
2 imaeq2 x = y H x = H y
3 2 eleq1d x = y H x V H y V
4 3 spvv x H x V H y V
5 4 adantl H Isom R , S A B x H x V H y V
6 1 5 isofrlem H Isom R , S A B x H x V S Fr B R Fr A
7 isosolem H Isom R , S A B S Or B R Or A
8 7 adantr H Isom R , S A B x H x V S Or B R Or A
9 6 8 anim12d H Isom R , S A B x H x V S Fr B S Or B R Fr A R Or A
10 df-we S We B S Fr B S Or B
11 df-we R We A R Fr A R Or A
12 9 10 11 3imtr4g H Isom R , S A B x H x V S We B R We A