Metamath Proof Explorer


Theorem isperf2

Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion isperf2 J Perf J Top X limPt J X

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 isperf J Perf J Top limPt J X = X
3 ssid X X
4 1 lpss J Top X X limPt J X X
5 3 4 mpan2 J Top limPt J X X
6 eqss limPt J X = X limPt J X X X limPt J X
7 6 baib limPt J X X limPt J X = X X limPt J X
8 5 7 syl J Top limPt J X = X X limPt J X
9 8 pm5.32i J Top limPt J X = X J Top X limPt J X
10 2 9 bitri J Perf J Top X limPt J X