Database
BASIC TOPOLOGY
Topology
Limit points and perfect sets
isperf2
Next ⟩
isperf3
Metamath Proof Explorer
Ascii
Unicode
Theorem
isperf2
Description:
Definition of a perfect space.
(Contributed by
Mario Carneiro
, 24-Dec-2016)
Ref
Expression
Hypothesis
lpfval.1
⊢
X
=
⋃
J
Assertion
isperf2
⊢
J
∈
Perf
↔
J
∈
Top
∧
X
⊆
limPt
⁡
J
⁡
X
Proof
Step
Hyp
Ref
Expression
1
lpfval.1
⊢
X
=
⋃
J
2
1
isperf
⊢
J
∈
Perf
↔
J
∈
Top
∧
limPt
⁡
J
⁡
X
=
X
3
ssid
⊢
X
⊆
X
4
1
lpss
⊢
J
∈
Top
∧
X
⊆
X
→
limPt
⁡
J
⁡
X
⊆
X
5
3
4
mpan2
⊢
J
∈
Top
→
limPt
⁡
J
⁡
X
⊆
X
6
eqss
⊢
limPt
⁡
J
⁡
X
=
X
↔
limPt
⁡
J
⁡
X
⊆
X
∧
X
⊆
limPt
⁡
J
⁡
X
7
6
baib
⊢
limPt
⁡
J
⁡
X
⊆
X
→
limPt
⁡
J
⁡
X
=
X
↔
X
⊆
limPt
⁡
J
⁡
X
8
5
7
syl
⊢
J
∈
Top
→
limPt
⁡
J
⁡
X
=
X
↔
X
⊆
limPt
⁡
J
⁡
X
9
8
pm5.32i
⊢
J
∈
Top
∧
limPt
⁡
J
⁡
X
=
X
↔
J
∈
Top
∧
X
⊆
limPt
⁡
J
⁡
X
10
2
9
bitri
⊢
J
∈
Perf
↔
J
∈
Top
∧
X
⊆
limPt
⁡
J
⁡
X