Metamath Proof Explorer


Theorem isperf3

Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion isperf3 J Perf J Top x X ¬ x J

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 isperf2 J Perf J Top X limPt J X
3 dfss3 X limPt J X x X x limPt J X
4 1 maxlp J Top x limPt J X x X ¬ x J
5 4 baibd J Top x X x limPt J X ¬ x J
6 5 ralbidva J Top x X x limPt J X x X ¬ x J
7 3 6 syl5bb J Top X limPt J X x X ¬ x J
8 7 pm5.32i J Top X limPt J X J Top x X ¬ x J
9 2 8 bitri J Perf J Top x X ¬ x J