Metamath Proof Explorer


Theorem isperp

Description: Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of Schwabhauser p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
isperp.b φ B ran L
Assertion isperp φ A 𝒢 G B x A B u A v B ⟨“ uxv ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 isperp.b φ B ran L
8 df-br A 𝒢 G B A B 𝒢 G
9 df-perpg 𝒢 = g V a b | a ran Line 𝒢 g b ran Line 𝒢 g x a b u a v b ⟨“ uxv ”⟩ 𝒢 g
10 simpr φ g = G g = G
11 10 fveq2d φ g = G Line 𝒢 g = Line 𝒢 G
12 11 4 eqtr4di φ g = G Line 𝒢 g = L
13 12 rneqd φ g = G ran Line 𝒢 g = ran L
14 13 eleq2d φ g = G a ran Line 𝒢 g a ran L
15 13 eleq2d φ g = G b ran Line 𝒢 g b ran L
16 14 15 anbi12d φ g = G a ran Line 𝒢 g b ran Line 𝒢 g a ran L b ran L
17 10 fveq2d φ g = G 𝒢 g = 𝒢 G
18 17 eleq2d φ g = G ⟨“ uxv ”⟩ 𝒢 g ⟨“ uxv ”⟩ 𝒢 G
19 18 ralbidv φ g = G v b ⟨“ uxv ”⟩ 𝒢 g v b ⟨“ uxv ”⟩ 𝒢 G
20 19 rexralbidv φ g = G x a b u a v b ⟨“ uxv ”⟩ 𝒢 g x a b u a v b ⟨“ uxv ”⟩ 𝒢 G
21 16 20 anbi12d φ g = G a ran Line 𝒢 g b ran Line 𝒢 g x a b u a v b ⟨“ uxv ”⟩ 𝒢 g a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G
22 21 opabbidv φ g = G a b | a ran Line 𝒢 g b ran Line 𝒢 g x a b u a v b ⟨“ uxv ”⟩ 𝒢 g = a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G
23 5 elexd φ G V
24 4 fvexi L V
25 rnexg L V ran L V
26 24 25 mp1i φ ran L V
27 26 26 xpexd φ ran L × ran L V
28 opabssxp a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G ran L × ran L
29 28 a1i φ a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G ran L × ran L
30 27 29 ssexd φ a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G V
31 9 22 23 30 fvmptd2 φ 𝒢 G = a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G
32 31 eleq2d φ A B 𝒢 G A B a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G
33 8 32 syl5bb φ A 𝒢 G B A B a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G
34 ineq12 a = A b = B a b = A B
35 simpll a = A b = B x a b a = A
36 simpllr a = A b = B x a b u a b = B
37 36 raleqdv a = A b = B x a b u a v b ⟨“ uxv ”⟩ 𝒢 G v B ⟨“ uxv ”⟩ 𝒢 G
38 35 37 raleqbidva a = A b = B x a b u a v b ⟨“ uxv ”⟩ 𝒢 G u A v B ⟨“ uxv ”⟩ 𝒢 G
39 34 38 rexeqbidva a = A b = B x a b u a v b ⟨“ uxv ”⟩ 𝒢 G x A B u A v B ⟨“ uxv ”⟩ 𝒢 G
40 39 opelopab2a A ran L B ran L A B a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G x A B u A v B ⟨“ uxv ”⟩ 𝒢 G
41 6 7 40 syl2anc φ A B a b | a ran L b ran L x a b u a v b ⟨“ uxv ”⟩ 𝒢 G x A B u A v B ⟨“ uxv ”⟩ 𝒢 G
42 33 41 bitrd φ A 𝒢 G B x A B u A v B ⟨“ uxv ”⟩ 𝒢 G