Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|
2 |
|
isperp.d |
|
3 |
|
isperp.i |
|
4 |
|
isperp.l |
|
5 |
|
isperp.g |
|
6 |
|
isperp.a |
|
7 |
|
isperp.b |
|
8 |
|
df-br |
|
9 |
|
df-perpg |
|
10 |
|
simpr |
|
11 |
10
|
fveq2d |
|
12 |
11 4
|
eqtr4di |
|
13 |
12
|
rneqd |
|
14 |
13
|
eleq2d |
|
15 |
13
|
eleq2d |
|
16 |
14 15
|
anbi12d |
|
17 |
10
|
fveq2d |
|
18 |
17
|
eleq2d |
|
19 |
18
|
ralbidv |
|
20 |
19
|
rexralbidv |
|
21 |
16 20
|
anbi12d |
|
22 |
21
|
opabbidv |
|
23 |
5
|
elexd |
|
24 |
4
|
fvexi |
|
25 |
|
rnexg |
|
26 |
24 25
|
mp1i |
|
27 |
26 26
|
xpexd |
|
28 |
|
opabssxp |
|
29 |
28
|
a1i |
|
30 |
27 29
|
ssexd |
|
31 |
9 22 23 30
|
fvmptd2 |
|
32 |
31
|
eleq2d |
|
33 |
8 32
|
syl5bb |
|
34 |
|
ineq12 |
|
35 |
|
simpll |
|
36 |
|
simpllr |
|
37 |
36
|
raleqdv |
|
38 |
35 37
|
raleqbidva |
|
39 |
34 38
|
rexeqbidva |
|
40 |
39
|
opelopab2a |
|
41 |
6 7 40
|
syl2anc |
|
42 |
33 41
|
bitrd |
|