Metamath Proof Explorer


Theorem isperp2d

Description: One direction of isperp2 . (Contributed by Thierry Arnoux, 10-Nov-2019)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
isperp2.b φ B ran L
isperp2.x φ X A B
isperp2d.u φ U A
isperp2d.v φ V B
isperp2d.p φ A 𝒢 G B
Assertion isperp2d φ ⟨“ UXV ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 isperp2.b φ B ran L
8 isperp2.x φ X A B
9 isperp2d.u φ U A
10 isperp2d.v φ V B
11 isperp2d.p φ A 𝒢 G B
12 1 2 3 4 5 6 7 8 isperp2 φ A 𝒢 G B u A v B ⟨“ uXv ”⟩ 𝒢 G
13 11 12 mpbid φ u A v B ⟨“ uXv ”⟩ 𝒢 G
14 id u = U u = U
15 eqidd u = U X = X
16 eqidd u = U v = v
17 14 15 16 s3eqd u = U ⟨“ uXv ”⟩ = ⟨“ UXv ”⟩
18 17 eleq1d u = U ⟨“ uXv ”⟩ 𝒢 G ⟨“ UXv ”⟩ 𝒢 G
19 eqidd v = V U = U
20 eqidd v = V X = X
21 id v = V v = V
22 19 20 21 s3eqd v = V ⟨“ UXv ”⟩ = ⟨“ UXV ”⟩
23 22 eleq1d v = V ⟨“ UXv ”⟩ 𝒢 G ⟨“ UXV ”⟩ 𝒢 G
24 18 23 rspc2v U A V B u A v B ⟨“ uXv ”⟩ 𝒢 G ⟨“ UXV ”⟩ 𝒢 G
25 9 10 24 syl2anc φ u A v B ⟨“ uXv ”⟩ 𝒢 G ⟨“ UXV ”⟩ 𝒢 G
26 13 25 mpd φ ⟨“ UXV ”⟩ 𝒢 G