Step |
Hyp |
Ref |
Expression |
1 |
|
isppw |
|
2 |
|
reu6 |
|
3 |
|
equid |
|
4 |
|
breq1 |
|
5 |
|
equequ1 |
|
6 |
4 5
|
bibi12d |
|
7 |
6
|
rspcva |
|
8 |
7
|
adantll |
|
9 |
3 8
|
mpbiri |
|
10 |
|
simplr |
|
11 |
|
simpll |
|
12 |
|
pcelnn |
|
13 |
10 11 12
|
syl2anc |
|
14 |
9 13
|
mpbird |
|
15 |
|
simpr |
|
16 |
15
|
oveq1d |
|
17 |
|
simpllr |
|
18 |
|
pccl |
|
19 |
18
|
ancoms |
|
20 |
19
|
ad2antrr |
|
21 |
20
|
nn0zd |
|
22 |
|
pcid |
|
23 |
17 21 22
|
syl2anc |
|
24 |
16 23
|
eqtr4d |
|
25 |
15
|
oveq1d |
|
26 |
24 25
|
eqtr4d |
|
27 |
|
simprr |
|
28 |
27
|
notbid |
|
29 |
28
|
biimpar |
|
30 |
|
simplrl |
|
31 |
|
simplll |
|
32 |
|
pceq0 |
|
33 |
30 31 32
|
syl2anc |
|
34 |
29 33
|
mpbird |
|
35 |
|
simprl |
|
36 |
|
simplr |
|
37 |
19
|
adantr |
|
38 |
|
prmdvdsexpr |
|
39 |
35 36 37 38
|
syl3anc |
|
40 |
39
|
con3dimp |
|
41 |
|
prmnn |
|
42 |
41
|
adantl |
|
43 |
42 19
|
nnexpcld |
|
44 |
43
|
ad2antrr |
|
45 |
|
pceq0 |
|
46 |
30 44 45
|
syl2anc |
|
47 |
40 46
|
mpbird |
|
48 |
34 47
|
eqtr4d |
|
49 |
26 48
|
pm2.61dan |
|
50 |
49
|
expr |
|
51 |
50
|
ralimdva |
|
52 |
51
|
imp |
|
53 |
|
nnnn0 |
|
54 |
53
|
ad2antrr |
|
55 |
43
|
adantr |
|
56 |
55
|
nnnn0d |
|
57 |
|
pc11 |
|
58 |
54 56 57
|
syl2anc |
|
59 |
52 58
|
mpbird |
|
60 |
|
oveq2 |
|
61 |
60
|
rspceeqv |
|
62 |
14 59 61
|
syl2anc |
|
63 |
62
|
ex |
|
64 |
|
prmdvdsexpb |
|
65 |
64
|
3coml |
|
66 |
65
|
3expa |
|
67 |
66
|
ralrimiva |
|
68 |
67
|
adantll |
|
69 |
|
breq2 |
|
70 |
69
|
bibi1d |
|
71 |
70
|
ralbidv |
|
72 |
68 71
|
syl5ibrcom |
|
73 |
72
|
rexlimdva |
|
74 |
63 73
|
impbid |
|
75 |
74
|
rexbidva |
|
76 |
2 75
|
syl5bb |
|
77 |
1 76
|
bitrd |
|