Metamath Proof Explorer


Theorem isprm2lem

Description: Lemma for isprm2 . (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion isprm2lem P P 1 n | n P 2 𝑜 n | n P = 1 P

Proof

Step Hyp Ref Expression
1 simplr P P 1 n | n P 2 𝑜 P 1
2 1 necomd P P 1 n | n P 2 𝑜 1 P
3 simpr P P 1 n | n P 2 𝑜 n | n P 2 𝑜
4 nnz P P
5 1dvds P 1 P
6 4 5 syl P 1 P
7 6 ad2antrr P P 1 n | n P 2 𝑜 1 P
8 1nn 1
9 breq1 n = 1 n P 1 P
10 9 elrab3 1 1 n | n P 1 P
11 8 10 ax-mp 1 n | n P 1 P
12 7 11 sylibr P P 1 n | n P 2 𝑜 1 n | n P
13 iddvds P P P
14 4 13 syl P P P
15 14 ad2antrr P P 1 n | n P 2 𝑜 P P
16 breq1 n = P n P P P
17 16 elrab3 P P n | n P P P
18 17 ad2antrr P P 1 n | n P 2 𝑜 P n | n P P P
19 15 18 mpbird P P 1 n | n P 2 𝑜 P n | n P
20 en2eqpr n | n P 2 𝑜 1 n | n P P n | n P 1 P n | n P = 1 P
21 3 12 19 20 syl3anc P P 1 n | n P 2 𝑜 1 P n | n P = 1 P
22 2 21 mpd P P 1 n | n P 2 𝑜 n | n P = 1 P
23 22 ex P P 1 n | n P 2 𝑜 n | n P = 1 P
24 necom 1 P P 1
25 pr2ne 1 P 1 P 2 𝑜 1 P
26 8 25 mpan P 1 P 2 𝑜 1 P
27 26 biimpar P 1 P 1 P 2 𝑜
28 24 27 sylan2br P P 1 1 P 2 𝑜
29 breq1 n | n P = 1 P n | n P 2 𝑜 1 P 2 𝑜
30 28 29 syl5ibrcom P P 1 n | n P = 1 P n | n P 2 𝑜
31 23 30 impbid P P 1 n | n P 2 𝑜 n | n P = 1 P