Metamath Proof Explorer


Theorem isprm4

Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion isprm4 P P 2 z 2 z P z = P

Proof

Step Hyp Ref Expression
1 isprm2 P P 2 z z P z = 1 z = P
2 eluz2b3 z 2 z z 1
3 2 imbi1i z 2 z P z = P z z 1 z P z = P
4 impexp z z 1 z P z = P z z 1 z P z = P
5 bi2.04 z 1 z P z = P z P z 1 z = P
6 df-ne z 1 ¬ z = 1
7 6 imbi1i z 1 z = P ¬ z = 1 z = P
8 df-or z = 1 z = P ¬ z = 1 z = P
9 7 8 bitr4i z 1 z = P z = 1 z = P
10 9 imbi2i z P z 1 z = P z P z = 1 z = P
11 5 10 bitri z 1 z P z = P z P z = 1 z = P
12 11 imbi2i z z 1 z P z = P z z P z = 1 z = P
13 4 12 bitri z z 1 z P z = P z z P z = 1 z = P
14 3 13 bitri z 2 z P z = P z z P z = 1 z = P
15 14 ralbii2 z 2 z P z = P z z P z = 1 z = P
16 15 anbi2i P 2 z 2 z P z = P P 2 z z P z = 1 z = P
17 1 16 bitr4i P P 2 z 2 z P z = P