| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapsubcl.b |
|
| 2 |
|
pmapsubcl.m |
|
| 3 |
|
pmapsubcl.c |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5 3
|
ispsubclN |
|
| 7 |
|
hlop |
|
| 8 |
7
|
adantr |
|
| 9 |
|
hlclat |
|
| 10 |
9
|
adantr |
|
| 11 |
4 5
|
polssatN |
|
| 12 |
1 4
|
atssbase |
|
| 13 |
11 12
|
sstrdi |
|
| 14 |
|
eqid |
|
| 15 |
1 14
|
clatlubcl |
|
| 16 |
10 13 15
|
syl2anc |
|
| 17 |
|
eqid |
|
| 18 |
1 17
|
opoccl |
|
| 19 |
8 16 18
|
syl2anc |
|
| 20 |
19
|
ex |
|
| 21 |
20
|
adantrd |
|
| 22 |
14 17 4 2 5
|
polval2N |
|
| 23 |
11 22
|
syldan |
|
| 24 |
23
|
ex |
|
| 25 |
|
eqeq1 |
|
| 26 |
25
|
biimpcd |
|
| 27 |
24 26
|
syl6 |
|
| 28 |
27
|
impd |
|
| 29 |
21 28
|
jcad |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
rspceeqv |
|
| 32 |
29 31
|
syl6 |
|
| 33 |
1 4 2
|
pmapssat |
|
| 34 |
1 2 5
|
2polpmapN |
|
| 35 |
|
sseq1 |
|
| 36 |
|
2fveq3 |
|
| 37 |
|
id |
|
| 38 |
36 37
|
eqeq12d |
|
| 39 |
35 38
|
anbi12d |
|
| 40 |
39
|
biimprcd |
|
| 41 |
33 34 40
|
syl2anc |
|
| 42 |
41
|
rexlimdva |
|
| 43 |
32 42
|
impbid |
|
| 44 |
6 43
|
bitrd |
|