Metamath Proof Explorer


Theorem ispsubcl2N

Description: Alternate predicate for "is a closed projective subspace". Remark in Holland95 p. 223. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapsubcl.b B = Base K
pmapsubcl.m M = pmap K
pmapsubcl.c C = PSubCl K
Assertion ispsubcl2N K HL X C y B X = M y

Proof

Step Hyp Ref Expression
1 pmapsubcl.b B = Base K
2 pmapsubcl.m M = pmap K
3 pmapsubcl.c C = PSubCl K
4 eqid Atoms K = Atoms K
5 eqid 𝑃 K = 𝑃 K
6 4 5 3 ispsubclN K HL X C X Atoms K 𝑃 K 𝑃 K X = X
7 hlop K HL K OP
8 7 adantr K HL X Atoms K K OP
9 hlclat K HL K CLat
10 9 adantr K HL X Atoms K K CLat
11 4 5 polssatN K HL X Atoms K 𝑃 K X Atoms K
12 1 4 atssbase Atoms K B
13 11 12 sstrdi K HL X Atoms K 𝑃 K X B
14 eqid lub K = lub K
15 1 14 clatlubcl K CLat 𝑃 K X B lub K 𝑃 K X B
16 10 13 15 syl2anc K HL X Atoms K lub K 𝑃 K X B
17 eqid oc K = oc K
18 1 17 opoccl K OP lub K 𝑃 K X B oc K lub K 𝑃 K X B
19 8 16 18 syl2anc K HL X Atoms K oc K lub K 𝑃 K X B
20 19 ex K HL X Atoms K oc K lub K 𝑃 K X B
21 20 adantrd K HL X Atoms K 𝑃 K 𝑃 K X = X oc K lub K 𝑃 K X B
22 14 17 4 2 5 polval2N K HL 𝑃 K X Atoms K 𝑃 K 𝑃 K X = M oc K lub K 𝑃 K X
23 11 22 syldan K HL X Atoms K 𝑃 K 𝑃 K X = M oc K lub K 𝑃 K X
24 23 ex K HL X Atoms K 𝑃 K 𝑃 K X = M oc K lub K 𝑃 K X
25 eqeq1 𝑃 K 𝑃 K X = X 𝑃 K 𝑃 K X = M oc K lub K 𝑃 K X X = M oc K lub K 𝑃 K X
26 25 biimpcd 𝑃 K 𝑃 K X = M oc K lub K 𝑃 K X 𝑃 K 𝑃 K X = X X = M oc K lub K 𝑃 K X
27 24 26 syl6 K HL X Atoms K 𝑃 K 𝑃 K X = X X = M oc K lub K 𝑃 K X
28 27 impd K HL X Atoms K 𝑃 K 𝑃 K X = X X = M oc K lub K 𝑃 K X
29 21 28 jcad K HL X Atoms K 𝑃 K 𝑃 K X = X oc K lub K 𝑃 K X B X = M oc K lub K 𝑃 K X
30 fveq2 y = oc K lub K 𝑃 K X M y = M oc K lub K 𝑃 K X
31 30 rspceeqv oc K lub K 𝑃 K X B X = M oc K lub K 𝑃 K X y B X = M y
32 29 31 syl6 K HL X Atoms K 𝑃 K 𝑃 K X = X y B X = M y
33 1 4 2 pmapssat K HL y B M y Atoms K
34 1 2 5 2polpmapN K HL y B 𝑃 K 𝑃 K M y = M y
35 sseq1 X = M y X Atoms K M y Atoms K
36 2fveq3 X = M y 𝑃 K 𝑃 K X = 𝑃 K 𝑃 K M y
37 id X = M y X = M y
38 36 37 eqeq12d X = M y 𝑃 K 𝑃 K X = X 𝑃 K 𝑃 K M y = M y
39 35 38 anbi12d X = M y X Atoms K 𝑃 K 𝑃 K X = X M y Atoms K 𝑃 K 𝑃 K M y = M y
40 39 biimprcd M y Atoms K 𝑃 K 𝑃 K M y = M y X = M y X Atoms K 𝑃 K 𝑃 K X = X
41 33 34 40 syl2anc K HL y B X = M y X Atoms K 𝑃 K 𝑃 K X = X
42 41 rexlimdva K HL y B X = M y X Atoms K 𝑃 K 𝑃 K X = X
43 32 42 impbid K HL X Atoms K 𝑃 K 𝑃 K X = X y B X = M y
44 6 43 bitrd K HL X C y B X = M y