Step |
Hyp |
Ref |
Expression |
1 |
|
pmapsubcl.b |
|
2 |
|
pmapsubcl.m |
|
3 |
|
pmapsubcl.c |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5 3
|
ispsubclN |
|
7 |
|
hlop |
|
8 |
7
|
adantr |
|
9 |
|
hlclat |
|
10 |
9
|
adantr |
|
11 |
4 5
|
polssatN |
|
12 |
1 4
|
atssbase |
|
13 |
11 12
|
sstrdi |
|
14 |
|
eqid |
|
15 |
1 14
|
clatlubcl |
|
16 |
10 13 15
|
syl2anc |
|
17 |
|
eqid |
|
18 |
1 17
|
opoccl |
|
19 |
8 16 18
|
syl2anc |
|
20 |
19
|
ex |
|
21 |
20
|
adantrd |
|
22 |
14 17 4 2 5
|
polval2N |
|
23 |
11 22
|
syldan |
|
24 |
23
|
ex |
|
25 |
|
eqeq1 |
|
26 |
25
|
biimpcd |
|
27 |
24 26
|
syl6 |
|
28 |
27
|
impd |
|
29 |
21 28
|
jcad |
|
30 |
|
fveq2 |
|
31 |
30
|
rspceeqv |
|
32 |
29 31
|
syl6 |
|
33 |
1 4 2
|
pmapssat |
|
34 |
1 2 5
|
2polpmapN |
|
35 |
|
sseq1 |
|
36 |
|
2fveq3 |
|
37 |
|
id |
|
38 |
36 37
|
eqeq12d |
|
39 |
35 38
|
anbi12d |
|
40 |
39
|
biimprcd |
|
41 |
33 34 40
|
syl2anc |
|
42 |
41
|
rexlimdva |
|
43 |
32 42
|
impbid |
|
44 |
6 43
|
bitrd |
|