Metamath Proof Explorer


Theorem ispsubsp

Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011)

Ref Expression
Hypotheses psubspset.l ˙ = K
psubspset.j ˙ = join K
psubspset.a A = Atoms K
psubspset.s S = PSubSp K
Assertion ispsubsp K D X S X A p X q X r A r ˙ p ˙ q r X

Proof

Step Hyp Ref Expression
1 psubspset.l ˙ = K
2 psubspset.j ˙ = join K
3 psubspset.a A = Atoms K
4 psubspset.s S = PSubSp K
5 1 2 3 4 psubspset K D S = x | x A p x q x r A r ˙ p ˙ q r x
6 5 eleq2d K D X S X x | x A p x q x r A r ˙ p ˙ q r x
7 3 fvexi A V
8 7 ssex X A X V
9 8 adantr X A p X q X r A r ˙ p ˙ q r X X V
10 sseq1 x = X x A X A
11 eleq2 x = X r x r X
12 11 imbi2d x = X r ˙ p ˙ q r x r ˙ p ˙ q r X
13 12 ralbidv x = X r A r ˙ p ˙ q r x r A r ˙ p ˙ q r X
14 13 raleqbi1dv x = X q x r A r ˙ p ˙ q r x q X r A r ˙ p ˙ q r X
15 14 raleqbi1dv x = X p x q x r A r ˙ p ˙ q r x p X q X r A r ˙ p ˙ q r X
16 10 15 anbi12d x = X x A p x q x r A r ˙ p ˙ q r x X A p X q X r A r ˙ p ˙ q r X
17 9 16 elab3 X x | x A p x q x r A r ˙ p ˙ q r x X A p X q X r A r ˙ p ˙ q r X
18 6 17 bitrdi K D X S X A p X q X r A r ˙ p ˙ q r X