Metamath Proof Explorer


Theorem ispsubsp2

Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012)

Ref Expression
Hypotheses psubspset.l ˙ = K
psubspset.j ˙ = join K
psubspset.a A = Atoms K
psubspset.s S = PSubSp K
Assertion ispsubsp2 K D X S X A p A q X r X p ˙ q ˙ r p X

Proof

Step Hyp Ref Expression
1 psubspset.l ˙ = K
2 psubspset.j ˙ = join K
3 psubspset.a A = Atoms K
4 psubspset.s S = PSubSp K
5 1 2 3 4 ispsubsp K D X S X A q X r X p A p ˙ q ˙ r p X
6 ralcom r X p A p ˙ q ˙ r p X p A r X p ˙ q ˙ r p X
7 r19.23v r X p ˙ q ˙ r p X r X p ˙ q ˙ r p X
8 7 ralbii p A r X p ˙ q ˙ r p X p A r X p ˙ q ˙ r p X
9 6 8 bitri r X p A p ˙ q ˙ r p X p A r X p ˙ q ˙ r p X
10 9 ralbii q X r X p A p ˙ q ˙ r p X q X p A r X p ˙ q ˙ r p X
11 ralcom q X p A r X p ˙ q ˙ r p X p A q X r X p ˙ q ˙ r p X
12 r19.23v q X r X p ˙ q ˙ r p X q X r X p ˙ q ˙ r p X
13 12 ralbii p A q X r X p ˙ q ˙ r p X p A q X r X p ˙ q ˙ r p X
14 11 13 bitri q X p A r X p ˙ q ˙ r p X p A q X r X p ˙ q ˙ r p X
15 10 14 bitri q X r X p A p ˙ q ˙ r p X p A q X r X p ˙ q ˙ r p X
16 15 a1i K D q X r X p A p ˙ q ˙ r p X p A q X r X p ˙ q ˙ r p X
17 16 anbi2d K D X A q X r X p A p ˙ q ˙ r p X X A p A q X r X p ˙ q ˙ r p X
18 5 17 bitrd K D X S X A p A q X r X p ˙ q ˙ r p X