Metamath Proof Explorer


Theorem ispthson

Description: Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis pthsonfval.v V = Vtx G
Assertion ispthson A V B V F U P Z F A PathsOn G B P F A TrailsOn G B P F Paths G P

Proof

Step Hyp Ref Expression
1 pthsonfval.v V = Vtx G
2 1 pthsonfval A V B V A PathsOn G B = f p | f A TrailsOn G B p f Paths G p
3 2 breqd A V B V F A PathsOn G B P F f p | f A TrailsOn G B p f Paths G p P
4 breq12 f = F p = P f A TrailsOn G B p F A TrailsOn G B P
5 breq12 f = F p = P f Paths G p F Paths G P
6 4 5 anbi12d f = F p = P f A TrailsOn G B p f Paths G p F A TrailsOn G B P F Paths G P
7 eqid f p | f A TrailsOn G B p f Paths G p = f p | f A TrailsOn G B p f Paths G p
8 6 7 brabga F U P Z F f p | f A TrailsOn G B p f Paths G p P F A TrailsOn G B P F Paths G P
9 3 8 sylan9bb A V B V F U P Z F A PathsOn G B P F A TrailsOn G B P F Paths G P