Metamath Proof Explorer


Theorem isr0

Description: The property " J is an R_0 space". A space is R_0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains x also contains y , so there is no separation, then x and y are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R_0 if and only if its Kolmogorov quotient is T_1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion isr0 J TopOn X KQ J Fre z X w X o J z o w o o J z o w o

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqid J TopOn X F J Cn KQ J
3 2 ad2antrr J TopOn X KQ J Fre z X w X F J Cn KQ J
4 cnima F J Cn KQ J v KQ J F -1 v J
5 3 4 sylan J TopOn X KQ J Fre z X w X v KQ J F -1 v J
6 eleq2 o = F -1 v z o z F -1 v
7 eleq2 o = F -1 v w o w F -1 v
8 6 7 imbi12d o = F -1 v z o w o z F -1 v w F -1 v
9 8 rspcv F -1 v J o J z o w o z F -1 v w F -1 v
10 5 9 syl J TopOn X KQ J Fre z X w X v KQ J o J z o w o z F -1 v w F -1 v
11 1 kqffn J TopOn X F Fn X
12 11 ad2antrr J TopOn X KQ J Fre z X w X F Fn X
13 12 adantr J TopOn X KQ J Fre z X w X v KQ J F Fn X
14 fnfun F Fn X Fun F
15 13 14 syl J TopOn X KQ J Fre z X w X v KQ J Fun F
16 simprl J TopOn X KQ J Fre z X w X z X
17 16 adantr J TopOn X KQ J Fre z X w X v KQ J z X
18 13 fndmd J TopOn X KQ J Fre z X w X v KQ J dom F = X
19 17 18 eleqtrrd J TopOn X KQ J Fre z X w X v KQ J z dom F
20 fvimacnv Fun F z dom F F z v z F -1 v
21 15 19 20 syl2anc J TopOn X KQ J Fre z X w X v KQ J F z v z F -1 v
22 simprr J TopOn X KQ J Fre z X w X w X
23 22 adantr J TopOn X KQ J Fre z X w X v KQ J w X
24 23 18 eleqtrrd J TopOn X KQ J Fre z X w X v KQ J w dom F
25 fvimacnv Fun F w dom F F w v w F -1 v
26 15 24 25 syl2anc J TopOn X KQ J Fre z X w X v KQ J F w v w F -1 v
27 21 26 imbi12d J TopOn X KQ J Fre z X w X v KQ J F z v F w v z F -1 v w F -1 v
28 10 27 sylibrd J TopOn X KQ J Fre z X w X v KQ J o J z o w o F z v F w v
29 28 ralrimdva J TopOn X KQ J Fre z X w X o J z o w o v KQ J F z v F w v
30 simplr J TopOn X KQ J Fre z X w X KQ J Fre
31 fnfvelrn F Fn X z X F z ran F
32 12 16 31 syl2anc J TopOn X KQ J Fre z X w X F z ran F
33 1 kqtopon J TopOn X KQ J TopOn ran F
34 33 ad2antrr J TopOn X KQ J Fre z X w X KQ J TopOn ran F
35 toponuni KQ J TopOn ran F ran F = KQ J
36 34 35 syl J TopOn X KQ J Fre z X w X ran F = KQ J
37 32 36 eleqtrd J TopOn X KQ J Fre z X w X F z KQ J
38 fnfvelrn F Fn X w X F w ran F
39 12 22 38 syl2anc J TopOn X KQ J Fre z X w X F w ran F
40 39 36 eleqtrd J TopOn X KQ J Fre z X w X F w KQ J
41 eqid KQ J = KQ J
42 41 t1sep2 KQ J Fre F z KQ J F w KQ J v KQ J F z v F w v F z = F w
43 30 37 40 42 syl3anc J TopOn X KQ J Fre z X w X v KQ J F z v F w v F z = F w
44 29 43 syld J TopOn X KQ J Fre z X w X o J z o w o F z = F w
45 1 kqfeq J TopOn X z X w X F z = F w y J z y w y
46 eleq2 o = y z o z y
47 eleq2 o = y w o w y
48 46 47 bibi12d o = y z o w o z y w y
49 48 cbvralvw o J z o w o y J z y w y
50 45 49 bitr4di J TopOn X z X w X F z = F w o J z o w o
51 50 3expb J TopOn X z X w X F z = F w o J z o w o
52 51 adantlr J TopOn X KQ J Fre z X w X F z = F w o J z o w o
53 44 52 sylibd J TopOn X KQ J Fre z X w X o J z o w o o J z o w o
54 53 ralrimivva J TopOn X KQ J Fre z X w X o J z o w o o J z o w o
55 54 ex J TopOn X KQ J Fre z X w X o J z o w o o J z o w o
56 1 kqopn J TopOn X o J F o KQ J
57 56 ad4ant14 J TopOn X z X w X o J F o KQ J
58 eleq2 v = F o F z v F z F o
59 eleq2 v = F o F w v F w F o
60 58 59 imbi12d v = F o F z v F w v F z F o F w F o
61 60 rspcv F o KQ J v KQ J F z v F w v F z F o F w F o
62 57 61 syl J TopOn X z X w X o J v KQ J F z v F w v F z F o F w F o
63 1 kqfvima J TopOn X o J z X z o F z F o
64 63 3expa J TopOn X o J z X z o F z F o
65 64 an32s J TopOn X z X o J z o F z F o
66 65 adantlr J TopOn X z X w X o J z o F z F o
67 1 kqfvima J TopOn X o J w X w o F w F o
68 67 3expa J TopOn X o J w X w o F w F o
69 68 an32s J TopOn X w X o J w o F w F o
70 69 adantllr J TopOn X z X w X o J w o F w F o
71 66 70 imbi12d J TopOn X z X w X o J z o w o F z F o F w F o
72 62 71 sylibrd J TopOn X z X w X o J v KQ J F z v F w v z o w o
73 72 ralrimdva J TopOn X z X w X v KQ J F z v F w v o J z o w o
74 1 kqfval J TopOn X z X F z = y J | z y
75 74 adantr J TopOn X z X w X F z = y J | z y
76 1 kqfval J TopOn X w X F w = y J | w y
77 76 adantlr J TopOn X z X w X F w = y J | w y
78 75 77 eqeq12d J TopOn X z X w X F z = F w y J | z y = y J | w y
79 rabbi y J z y w y y J | z y = y J | w y
80 49 79 bitri o J z o w o y J | z y = y J | w y
81 78 80 bitr4di J TopOn X z X w X F z = F w o J z o w o
82 81 biimprd J TopOn X z X w X o J z o w o F z = F w
83 73 82 imim12d J TopOn X z X w X o J z o w o o J z o w o v KQ J F z v F w v F z = F w
84 83 ralimdva J TopOn X z X w X o J z o w o o J z o w o w X v KQ J F z v F w v F z = F w
85 84 ralimdva J TopOn X z X w X o J z o w o o J z o w o z X w X v KQ J F z v F w v F z = F w
86 eleq1 a = F z a v F z v
87 86 imbi1d a = F z a v b v F z v b v
88 87 ralbidv a = F z v KQ J a v b v v KQ J F z v b v
89 eqeq1 a = F z a = b F z = b
90 88 89 imbi12d a = F z v KQ J a v b v a = b v KQ J F z v b v F z = b
91 90 ralbidv a = F z b ran F v KQ J a v b v a = b b ran F v KQ J F z v b v F z = b
92 91 ralrn F Fn X a ran F b ran F v KQ J a v b v a = b z X b ran F v KQ J F z v b v F z = b
93 eleq1 b = F w b v F w v
94 93 imbi2d b = F w F z v b v F z v F w v
95 94 ralbidv b = F w v KQ J F z v b v v KQ J F z v F w v
96 eqeq2 b = F w F z = b F z = F w
97 95 96 imbi12d b = F w v KQ J F z v b v F z = b v KQ J F z v F w v F z = F w
98 97 ralrn F Fn X b ran F v KQ J F z v b v F z = b w X v KQ J F z v F w v F z = F w
99 98 ralbidv F Fn X z X b ran F v KQ J F z v b v F z = b z X w X v KQ J F z v F w v F z = F w
100 92 99 bitrd F Fn X a ran F b ran F v KQ J a v b v a = b z X w X v KQ J F z v F w v F z = F w
101 11 100 syl J TopOn X a ran F b ran F v KQ J a v b v a = b z X w X v KQ J F z v F w v F z = F w
102 85 101 sylibrd J TopOn X z X w X o J z o w o o J z o w o a ran F b ran F v KQ J a v b v a = b
103 ist1-2 KQ J TopOn ran F KQ J Fre a ran F b ran F v KQ J a v b v a = b
104 33 103 syl J TopOn X KQ J Fre a ran F b ran F v KQ J a v b v a = b
105 102 104 sylibrd J TopOn X z X w X o J z o w o o J z o w o KQ J Fre
106 55 105 impbid J TopOn X KQ J Fre z X w X o J z o w o o J z o w o