Metamath Proof Explorer


Theorem israg

Description: Property for 3 points A, B, C to form a right angle. Definition 8.1 of Schwabhauser p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
Assertion israg φ ⟨“ ABC ”⟩ 𝒢 G A - ˙ C = A - ˙ S B C

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 7 8 9 s3cld φ ⟨“ ABC ”⟩ Word P
11 fveqeq2 w = ⟨“ ABC ”⟩ w = 3 ⟨“ ABC ”⟩ = 3
12 fveq1 w = ⟨“ ABC ”⟩ w 0 = ⟨“ ABC ”⟩ 0
13 fveq1 w = ⟨“ ABC ”⟩ w 2 = ⟨“ ABC ”⟩ 2
14 12 13 oveq12d w = ⟨“ ABC ”⟩ w 0 - ˙ w 2 = ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2
15 fveq1 w = ⟨“ ABC ”⟩ w 1 = ⟨“ ABC ”⟩ 1
16 15 fveq2d w = ⟨“ ABC ”⟩ S w 1 = S ⟨“ ABC ”⟩ 1
17 16 13 fveq12d w = ⟨“ ABC ”⟩ S w 1 w 2 = S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
18 12 17 oveq12d w = ⟨“ ABC ”⟩ w 0 - ˙ S w 1 w 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
19 14 18 eqeq12d w = ⟨“ ABC ”⟩ w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2 ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
20 11 19 anbi12d w = ⟨“ ABC ”⟩ w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2 ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
21 20 elrab3 ⟨“ ABC ”⟩ Word P ⟨“ ABC ”⟩ w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2 ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
22 10 21 syl φ ⟨“ ABC ”⟩ w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2 ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
23 df-rag 𝒢 = g V w Word Base g | w = 3 w 0 dist g w 2 = w 0 dist g pInv 𝒢 g w 1 w 2
24 simpr φ g = G g = G
25 24 fveq2d φ g = G Base g = Base G
26 25 1 eqtr4di φ g = G Base g = P
27 wrdeq Base g = P Word Base g = Word P
28 26 27 syl φ g = G Word Base g = Word P
29 24 fveq2d φ g = G dist g = dist G
30 29 2 eqtr4di φ g = G dist g = - ˙
31 30 oveqd φ g = G w 0 dist g w 2 = w 0 - ˙ w 2
32 eqidd φ g = G w 0 = w 0
33 24 fveq2d φ g = G pInv 𝒢 g = pInv 𝒢 G
34 33 5 eqtr4di φ g = G pInv 𝒢 g = S
35 34 fveq1d φ g = G pInv 𝒢 g w 1 = S w 1
36 35 fveq1d φ g = G pInv 𝒢 g w 1 w 2 = S w 1 w 2
37 30 32 36 oveq123d φ g = G w 0 dist g pInv 𝒢 g w 1 w 2 = w 0 - ˙ S w 1 w 2
38 31 37 eqeq12d φ g = G w 0 dist g w 2 = w 0 dist g pInv 𝒢 g w 1 w 2 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2
39 38 anbi2d φ g = G w = 3 w 0 dist g w 2 = w 0 dist g pInv 𝒢 g w 1 w 2 w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2
40 28 39 rabeqbidv φ g = G w Word Base g | w = 3 w 0 dist g w 2 = w 0 dist g pInv 𝒢 g w 1 w 2 = w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2
41 6 elexd φ G V
42 1 fvexi P V
43 42 wrdexi Word P V
44 43 rabex w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2 V
45 44 a1i φ w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2 V
46 23 40 41 45 fvmptd2 φ 𝒢 G = w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2
47 46 eleq2d φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ ABC ”⟩ w Word P | w = 3 w 0 - ˙ w 2 = w 0 - ˙ S w 1 w 2
48 s3fv0 A P ⟨“ ABC ”⟩ 0 = A
49 7 48 syl φ ⟨“ ABC ”⟩ 0 = A
50 49 eqcomd φ A = ⟨“ ABC ”⟩ 0
51 s3fv2 C P ⟨“ ABC ”⟩ 2 = C
52 9 51 syl φ ⟨“ ABC ”⟩ 2 = C
53 52 eqcomd φ C = ⟨“ ABC ”⟩ 2
54 50 53 oveq12d φ A - ˙ C = ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2
55 s3fv1 B P ⟨“ ABC ”⟩ 1 = B
56 8 55 syl φ ⟨“ ABC ”⟩ 1 = B
57 56 eqcomd φ B = ⟨“ ABC ”⟩ 1
58 57 fveq2d φ S B = S ⟨“ ABC ”⟩ 1
59 58 53 fveq12d φ S B C = S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
60 50 59 oveq12d φ A - ˙ S B C = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
61 54 60 eqeq12d φ A - ˙ C = A - ˙ S B C ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
62 s3len ⟨“ ABC ”⟩ = 3
63 62 a1i φ ⟨“ ABC ”⟩ = 3
64 63 biantrurd φ ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
65 61 64 bitrd φ A - ˙ C = A - ˙ S B C ⟨“ ABC ”⟩ = 3 ⟨“ ABC ”⟩ 0 - ˙ ⟨“ ABC ”⟩ 2 = ⟨“ ABC ”⟩ 0 - ˙ S ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 2
66 22 47 65 3bitr4d φ ⟨“ ABC ”⟩ 𝒢 G A - ˙ C = A - ˙ S B C