Metamath Proof Explorer


Theorem isreg

Description: The predicate "is a regular space". In a regular space, any open neighborhood has a closed subneighborhood. Note that some authors require the space to be Hausdorff (which would make it the same as T_3), but we reserve the phrase "regular Hausdorff" for that as many topologists do. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion isreg J Reg J Top x J y x z J y z cls J z x

Proof

Step Hyp Ref Expression
1 fveq2 j = J cls j = cls J
2 1 fveq1d j = J cls j z = cls J z
3 2 sseq1d j = J cls j z x cls J z x
4 3 anbi2d j = J y z cls j z x y z cls J z x
5 4 rexeqbi1dv j = J z j y z cls j z x z J y z cls J z x
6 5 ralbidv j = J y x z j y z cls j z x y x z J y z cls J z x
7 6 raleqbi1dv j = J x j y x z j y z cls j z x x J y x z J y z cls J z x
8 df-reg Reg = j Top | x j y x z j y z cls j z x
9 7 8 elrab2 J Reg J Top x J y x z J y z cls J z x