Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhm.m | |
|
| isrhm.n | |
||
| Assertion | isrhm | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhm.m | |
|
| 2 | isrhm.n | |
|
| 3 | dfrhm2 | |
|
| 4 | 3 | elmpocl | |
| 5 | oveq12 | |
|
| 6 | fveq2 | |
|
| 7 | fveq2 | |
|
| 8 | 6 7 | oveqan12d | |
| 9 | 5 8 | ineq12d | |
| 10 | ovex | |
|
| 11 | 10 | inex1 | |
| 12 | 9 3 11 | ovmpoa | |
| 13 | 12 | eleq2d | |
| 14 | elin | |
|
| 15 | 1 2 | oveq12i | |
| 16 | 15 | eqcomi | |
| 17 | 16 | eleq2i | |
| 18 | 17 | anbi2i | |
| 19 | 14 18 | bitri | |
| 20 | 13 19 | bitrdi | |
| 21 | 4 20 | biadanii | |